Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

SAR11 clade dominates ocean surface bacterioplankton communities

Abstract

The most abundant class of bacterial ribosomal RNA genes detected in seawater DNA by gene cloning belongs to SAR11—an α-proteobacterial clade1. Other than indications of their prevalence in seawater, little is known about these organisms. Here we report quantitative measurements of the cellular abundance of the SAR11 clade in northwestern Sargasso Sea waters to 3,000 m and in Oregon coastal surface waters. On average, the SAR11 clade accounts for a third of the cells present in surface waters and nearly a fifth of the cells present in the mesopelagic zone. In some regions, members of the SAR11 clade represent as much as 50% of the total surface microbial community and 25% of the subeuphotic microbial community. By extrapolation, we estimate that globally there are 2.4 × 1028 SAR11 cells in the oceans, half of which are located in the euphotic zone. Although the biogeochemical role of the SAR11 clade remains uncertain, these data support the conclusion that this microbial group is among the most successful organisms on Earth.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of the SAR11 clade in the world's oceans.
Figure 2: SAR11 fluorescence in situ hybridization image composite.
Figure 3: SAR11 probe counts, bacterial probe counts and direct cell counts (DAPI-staining particles) in the northwestern Sargasso Sea.
Figure 4: Percentages of SAR11 clade 16S rRNA at surface depths and depths ≥200 m.

Similar content being viewed by others

References

  1. Giovannoni, S. & Rappé, M. Microbial Ecology of the Oceans (ed. Kirchman, D. L.) 47–84 (John Wiley and Sons, New York, 2000)

    Google Scholar 

  2. Cho, B. C. & Azam, F. Major role of bacteria in biogeochemical fluxes in the ocean's interior. Nature 332, 441–443 (1988)

    Article  ADS  CAS  Google Scholar 

  3. Fuhrman, J. A., Sleeter, T. D., Carlson, C. A. & Proctor, L. Dominance of bacterial biomass in the Sargasso Sea and its ecological implications. Mar. Ecol. Prog. Ser. 57, 207–217 (1989)

    Article  ADS  Google Scholar 

  4. Buck, K. R., Chavez, F. P. & Campbell, L. Basin-wide distributions of living carbon components and the inverted trophic pyramid of the central gyre of the North Atlantic Ocean, summer 1993. Aquat. Microb. Ecol. 10, 238–298 (1996)

    Google Scholar 

  5. Carlson, C. A., Ducklow, H. W. & Sleeter, T. D. Stocks and dynamics of bacterioplankton in the northwestern Sargasso Sea. Deep-Sea Res. II 43, 491–516 (1996)

    Article  ADS  CAS  Google Scholar 

  6. Karner, M. B., Delong, E. F. & Karl, D. M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409, 507–510 (2001)

    Article  ADS  CAS  Google Scholar 

  7. Fuhrman, J. A. & Ouverney, C. C. Marine microbial diversity studied via 16S rRNA sequences: cloning results from coastal waters and counting native archaea with fluorescent single cell probes. Aquat. Ecol. 32, 3–15 (1998)

    Article  CAS  Google Scholar 

  8. Wintzingerode, F. V., Gobel, U. B. & Stackebrandt, E. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21, 213–229 (1997)

    Article  Google Scholar 

  9. Hicks, R. E., Amann, R. I. & Stahl, D. A. Dual staining of natural bacterioplankton with 4′6-diamidino-2-phenylindole and fluorescent oligonucleotide probes targeting kingdom-level 16S rRNA sequences. Appl. Environ. Microbiol. 58, 2158–2163 (1992)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. DeLong, E. F., Wickham, G. S. & Pace, N. R. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243, 1360–1363 (1989)

    Article  ADS  CAS  Google Scholar 

  11. Amann, R. I., Krumholz, L. & Stahl, D. A. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol. 172, 762–770 (1990)

    Article  CAS  Google Scholar 

  12. Glöckner, F. O. et al. An in situ hybridization protocol for detection and identification of planktonic bacteria. Syst. Appl. Microbiol. 19, 403–406 (1996)

    Article  Google Scholar 

  13. Frischer, M. E., Floriani, P. J. & Nierzwicki-Bauer, S. A. Differential sensitivity of 16S rRNA targeted oligonucleotide probes used for fluorescence in situ hybridization is a result of ribosomal higher order structure. Can. J. Microbiol. 42, 1061–1071 (1996)

    Article  CAS  Google Scholar 

  14. Fuchs, B. M. et al. Flow cytometric analysis of the in situ accessibility of Escherichia coli 16S rRNA for fluorescently labeled oligonucleotide probes. Appl. Environ. Microbiol. 64, 4973–4982 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Fuchs, B. M., Glöckner, F. O., Wulf, J. & Amann, R. Unlabeled helper oligonucleotides increase the in situ accessibility to 16S rRNA of fluorescently labeled oligonucleotide probes. Appl. Environ. Microbiol. 66, 3603–3607 (2000)

    Article  CAS  Google Scholar 

  16. Lee, S., Malone, C. & Kemp, P. F. Use of multiple 16S rRNA-targeted fluorescent probes to increase signal strength and measure cellular RNA from natural planktonic bacteria. Mar. Ecol. Prog. Ser. 101, 193–201 (1993)

    Article  ADS  CAS  Google Scholar 

  17. Schonhuber, W., Fuchs, B., Juretschko, S. & Amann, R. I. Improved sensitivity of whole-cell hybridization by the combination of horseradish peroxidase-labeled oligonucleotides and tyramide signal amplification. Appl. Environ. Microbiol. 63, 3268–3273 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pernthaler, A., Preston, C. M., Pernthaler, J., DeLong, E. F. & Amann, R. Comparison of fluorescently labeled oligonucleotide and polynucleotide probes for the detection of pelagic marine bacteria and archaea. Appl. Environ. Microbiol. 68, 661–667 (2002)

    Article  CAS  Google Scholar 

  19. Sieracki, M. E., Johnson, P. W. & Sieburth, J. M. Detection, enumeration, and sizing of planktonic bacteria by image-analyzed epifluorescence microscopy. Appl. Environ. Microbiol. 49, 799–810 (1985)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Porter, K. G. & Feig, Y. S. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25, 943–948 (1980)

    Article  ADS  Google Scholar 

  21. Kemp, P. F., Lee, S. & LaRoche, J. Estimating the growth rate of slowly growing marine bacteria from RNA content. Appl. Environ. Microbiol. 59, 2594–2601 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rappé, M. S., Connon, S. A., Vergin, K. L. & Giovannoni, S. J. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418, 630–633 (2002)

    Article  ADS  Google Scholar 

  23. Cottrell, M. T. & Kirchman, D. L. Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Appl. Environ. Microbiol. 66, 5116–5122 (2000)

    Article  CAS  Google Scholar 

  24. Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: The unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998)

    Article  ADS  CAS  Google Scholar 

  25. Field, K. G. et al. Diversity and depth-specific distribution of SAR11 cluster rRNA genes from marine planktonic bacteria. Appl. Environ. Microbiol. 63, 63–70 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ludwig, W. et al. Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19, 554–568 (1998)

    Article  CAS  Google Scholar 

  27. Giovannoni, S. J., Britschgi, T. B., Moyer, C. L. & Field, K. G. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345, 60–63 (1990)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Parsons, N. Nelson, the BATS scientific team and officers and crew of the RV Weatherbird II for help with collecting and processing samples. This work was supported by grants from Oregon State University, the Murdock Charitable Trust and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Giovannoni.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morris, R., Rappé, M., Connon, S. et al. SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420, 806–810 (2002). https://doi.org/10.1038/nature01240

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01240

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing