Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Schizophrenia genetics: emerging themes for a complex disorder

Subjects

Abstract

After two decades of frustration, genetic studies of schizophrenia have entered an era of spectacular success. Advances in genotyping technologies and high throughput sequencing, increasing analytic rigour and collaborative efforts on a global scale have generated a profusion of new findings. The broad conclusions from these studies are threefold: (1) schizophrenia is a highly polygenic disorder with a complex array of contributing risk loci across the allelic frequency spectrum; (2) many psychiatric illnesses share risk genes and alleles, specifically, schizophrenia has substantial overlaps with bipolar disorder, intellectual disability, major depressive disorder and autism spectrum disorders; and (3) some convergent biological themes are emerging from studies of schizophrenia and related disorders. In this commentary, we focus on the very recent findings that have emerged in the past 12 months, and in particular, the areas of convergence that are beginning to emerge from multiple study designs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Owen MJ, O’Donovan MC, Gottesman II . Schizophrenia In Psychiatric Genetics and Genomics. OUP Oxford New Ed edition 2002 pp 247–266.

    Google Scholar 

  2. O’Donovan MC, Craddock N, Norton N, Williams H, Peirce T, Moskvina V et al. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet 2008; 40: 1053–1055.

    Article  Google Scholar 

  3. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D et al. Common variants conferring risk of schizophrenia. Nature 2009; 460: 744–747.

    Article  CAS  Google Scholar 

  4. Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe'er I et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 2009; 460: 753–757.

    Article  CAS  Google Scholar 

  5. International Schizophrenia Consortium. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009; 460: 748–752.

    Article  Google Scholar 

  6. Ikeda M, Aleksic B, Kinoshita Y, Okochi T, Kawashima K, Kushima I et al. Genome-wide association study of schizophrenia in a Japanese population. Biol Psychiatry 2011; 69: 472–478.

    Article  Google Scholar 

  7. Hamshere M L, Walters JT, Smith R, Richards AL, Green E, Grozeva D et al. Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the Schizophrenia PGC. Mol Psychiatry 2012; 18: 708–712 10.1038/mp.2012.67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Genome-wide association study implicates HLA-C*01. 02 as a risk factor at the major histocompatibility complex locus in schizophrenia. Biol Psychiatry 2012; 72: 620–628.

    Article  Google Scholar 

  9. Lencz T, Guha S, Liu C, Rosenfeld J, Mukherjee S, DeRosse P et al. Genome-wide association study implicates NDST3 in schizophrenia and bipolar disorder. Nat Commun 2013; 4: 2739.

    Article  Google Scholar 

  10. Sullivan PF, Daly MJ, O’Donovan M . Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet 2012; 13: 537–551.

    Article  CAS  Google Scholar 

  11. Ripke S, O'Dushlaine C, Chambert K, Moran JL, Kähler AK, Akterin S et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 2013; 45: 1150–1159.

    Article  CAS  Google Scholar 

  12. Green E K, Grozeva D, Jones I, Jones L, Kirov G, Caesar S et al. The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Mol Psychiatry 2010; 15: 1016–1022.

    Article  CAS  Google Scholar 

  13. Smoller JW et al. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 2013; 381: 1371–1379.

    Article  CAS  Google Scholar 

  14. Lee SH, Ripke S, Neale BM, Faraone SV, Purcell SM, Perlis RH, Mowry BJ et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet 2013; 45: 984–994.

    Article  CAS  Google Scholar 

  15. Yang J, Lee SH, Goddard ME, Visscher PM . GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 2011; 88: 76–82.

    Article  CAS  Google Scholar 

  16. Karayiorgou M, Morris MA, Morrow B, Shprintzen RJ, Goldberg R, Borrow J et al. Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proc Natl Acad Sci 1995; 92: 7612–7616.

    Article  CAS  Google Scholar 

  17. Malhotra D, Sebat J . CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell 2012; 148: 1223–1241.

    Article  CAS  Google Scholar 

  18. Xu B, Roos JL, Levy S, van Rensburg EJ, Gogos JA, Karayiorgou M et al. Strong association of de novo copy number mutations with sporadic schizophrenia. Nat Genet 2008; 40: 880–885.

    Article  CAS  Google Scholar 

  19. Kirov G, Pocklington AJ, Holmans P, Ivanov D, Ikeda M, Ruderfer D et al. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol Psychiatry 2012; 17: 142–153.

    Article  CAS  Google Scholar 

  20. Rees E, Walters JT, Georgieva L, Isles AR, Chambert KD, Richards AL et al. Analysis of copy number variations at 15 schizophrenia-associated loci in a large, independent cohort. Br J Psychiatry 2013; 204: 108–114.

    Article  Google Scholar 

  21. Szatkiewicz JP, O'Dushlaine C, Chen G, Chambert K, Moran JL, Neale BM et al. Copy number variation in schizophrenia in Sweden. Mol Psychiatry 2014; 19: 762–773.

    Article  CAS  Google Scholar 

  22. Elia J, Glessner JT, Wang K, Takahashi N, Shtir CJ, Hadley D et al. Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder. Nat Genet 2012; 44: 78–84.

    Article  CAS  Google Scholar 

  23. Cooper GM, Coe BP, Girirajan S, Rosenfeld JA, Vu TH, Baker C et al. A copy number variation morbidity map of developmental delay. Nat Genet 2011; 43: 838–846.

    Article  CAS  Google Scholar 

  24. Williams NM, Franke B, Mick E, Anney RJ, Freitag CM, Gill M et al. Genome-wide analysis of copy number variants in attention deficit hyperactivity disorder: the role of rare variants and duplications at 15q13.3. Am J Psychiatry 2012; 169: 195–204.

    Article  Google Scholar 

  25. Girirajan S, Eichler EE . Phenotypic variability and genetic susceptibility to genomic disorders. Hum Mol Genet 2010; 19: R176–R187.

    Article  CAS  Google Scholar 

  26. Sahoo T, Theisen A, Rosenfeld JA, Lamb AN, Ravnan JB, Schultz RA et al. Copy number variants of schizophrenia susceptibility loci are associated with a spectrum of speech and developmental delays and behavior problems. Genet Med 2011; 13: 868–880.

    Article  Google Scholar 

  27. Kirov G, Rees E, Walters JT, Escott-Price V, Georgieva L, Richards AL et al. The Penetrance of Copy Number Variations for Schizophrenia and Developmental Delay. Biol Psychiatry 2013; 75: 378–385.

    Article  Google Scholar 

  28. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008; 320: 539–543.

    Article  CAS  Google Scholar 

  29. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014; 511: 421–427.

    Article  Google Scholar 

  30. Hamshere ML, Walters JT, Smith R, Richards AL, Green E, Grozeva D et al. Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the Schizophrenia PGC. Mol Psychiatry 2013; 18: 708–712.

    Article  CAS  Google Scholar 

  31. Plenge RM, Scolnick EM, Altshuler D . Validating therapeutic targets through human genetics. Nat Rev Drug Discov 2013; 12: 581–594.

    Article  CAS  Google Scholar 

  32. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489: 57–74.

  33. Carter CS, Bullmore ET, Harrison P . Is there a flame in the brain in psychosis? Biol Psychiatry 2014; 75: 258–259.

    Article  Google Scholar 

  34. Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 2014; 506: 179–184.

    Article  CAS  Google Scholar 

  35. Purcell SM, Moran JL, Fromer M, Ruderfer D, Solovieff N, Roussos P et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 2014; 506: 185–190.

    Article  CAS  Google Scholar 

  36. Xu B, Ionita-Laza I, Roos JL, Boone B, Woodrick S, Sun Y et al. De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia. Nat Genet 2012; 44: 1365–1369.

    Article  CAS  Google Scholar 

  37. Girard SL, Gauthier J, Noreau A, Xiong L, Zhou S, Jouan L et al. Increased exonic de novo mutation rate in individuals with schizophrenia. Nat Genet 2011; 43: 860–863.

    Article  CAS  Google Scholar 

  38. Gulsuner S, Walsh T, Watts AC, Lee MK, Thornton AM, Casadei S et al. Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network. Cell 2013; 154: 518–529.

    Article  CAS  Google Scholar 

  39. Neale BM, Kou Y, Liu L, Ma'ayan A, Samocha KE, Sabo A et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 2012; 485: 242–245.

    Article  CAS  Google Scholar 

  40. O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 2012; 485: 246–250.

    Article  Google Scholar 

  41. Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 2012; 485: 237–241.

    Article  CAS  Google Scholar 

  42. Iossifov I, Ronemus M, Levy D, Wang Z, Hakker I, Rosenbaum J et al. De Novo Gene Disruptions in Children on the Autistic Spectrum. Neuron 2012; 74: 285–299.

    Article  CAS  Google Scholar 

  43. Rauch A, Wieczorek D, Graf E, Wieland T, Endele S, Schwarzmayr T et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet 2012; 380: 1674–1682.

    Article  CAS  Google Scholar 

  44. De Ligt J, Willemsen MH, van Bon BW, Kleefstra T, Yntema HG, Kroes T et al. Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med 2012; 367: 1921–1929.

    Article  CAS  Google Scholar 

  45. Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature 2012; 488: 471–475.

    Article  CAS  Google Scholar 

  46. McGrath JJ, Petersen L, Agerbo E, Mors O, Mortensen PB, Pedersen CB et al. A comprehensive assessment of parental age and psychiatric disorders. JAMA Psychiatry 2014; 71: 301–309.

    Article  Google Scholar 

  47. McCarthy SE, Gillis J, Kramer M, Lihm J, Yoon S, Berstein Y et al. De novo mutations in schizophrenia implicate chromatin remodeling and support a genetic overlap with autism and intellectual disability. Mol Psychiatry 2014; 19: 652–658.

    Article  CAS  Google Scholar 

  48. Craddock N, Owen MJ . The Kraepelinian dichotomy – going, going... but still not gone. Br J Psychiatry 2010; 196: 92–95.

    Article  Google Scholar 

  49. Doherty JL, Owen MJ . The Research Domain Criteria: moving the goalposts to change the game. Br J Psychiatry 2014; 204: 171–173.

    Article  Google Scholar 

  50. Doherty JL, Owen MJ . Genomic insights into the overlap between psychiatric disorders: implications for research and clinical practice. Genome Med 2014; 6: 29.

    Article  Google Scholar 

  51. McCarroll SA, Hyman SE . Progress in the genetics of polygenic brain disorders: significant new challenges for neurobiology. Neuron 2013; 80: 578–587.

    Article  CAS  Google Scholar 

  52. Gaj T, Gersbach CA, Barbas CF . ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 2013; 31: 397–405.

    Article  CAS  Google Scholar 

  53. Zhang F, Wen Y, Guo X . CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet 2014; 23: R40–R46.

    Article  CAS  Google Scholar 

  54. Linden DEJ . The challenges and promise of neuroimaging in psychiatry. Neuron 2012; 73: 8–22.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work on schizophrenia is supported by MRC Centre (G0800509) and MRC Programme (G0801418) Grants, the European Community's Seventh Framework Programme (HEALTH-F2-2010-241909 (Project EU-GEI)) and the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no 279227.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M J Owen.

Ethics declarations

Competing interests

The author declare no conflicts of intrest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavanagh, D., Tansey, K., O'Donovan, M. et al. Schizophrenia genetics: emerging themes for a complex disorder. Mol Psychiatry 20, 72–76 (2015). https://doi.org/10.1038/mp.2014.148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2014.148

This article is cited by

Search

Quick links