Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Potential adverse effects of amphetamine treatment on brain and behavior: a review

A Corrigendum to this article was published on 14 September 2010

Abstract

Amphetamine stimulants have been used medically since early in the twentieth century, but they have a high abuse potential and can be neurotoxic. Although they have long been used effectively to treat attention deficit hyperactivity disorder (ADHD) in children and adolescents, amphetamines are now being prescribed increasingly as maintenance therapy for ADHD and narcolepsy in adults, considerably extending the period of potential exposure. Effects of prolonged stimulant treatment have not been fully explored, and understanding such effects is a research priority. Because the pharmacokinetics of amphetamines differ between children and adults, reevaluation of the potential for adverse effects of chronic treatment of adults is essential. Despite information on the effects of stimulants in laboratory animals, profound species differences in susceptibility to stimulant-induced neurotoxicity underscore the need for systematic studies of prolonged human exposure. Early amphetamine treatment has been linked to slowing in height and weight growth in some children. Because the number of prescriptions for amphetamines has increased several fold over the past decade, an amphetamine-containing formulation is the most commonly prescribed stimulant in North America, and it is noteworthy that amphetamines are also the most abused prescription medications. Although early treatment does not increase risk for substance abuse, few studies have tracked the compliance and usage profiles of individuals who began amphetamine treatment as adults. Overall, there is concern about risk for slowed growth in young patients who are dosed continuously, and for substance abuse in patients first medicated in late adolescence or adulthood. Although most adult patients also use amphetamines effectively and safely, occasional case reports indicate that prescription use can produce marked psychological adverse events, including stimulant-induced psychosis. Assessments of central toxicity and adverse psychological effects during late adulthood and senescence of adults who receive prolonged courses of amphetamine treatment are warranted. Finally, identification of the biological factors that confer risk and those that offer protection is also needed to better specify the parameters of safe, long-term, therapeutic administration of amphetamines to adults.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Fleckenstein AE, Volz TJ, Riddle EL, Gibb JW, Hanson GR . New insights into the mechanism of action of amphetamines. Annu Rev Pharmacol Toxicol 2007; 47: 681–698.

    Article  CAS  PubMed  Google Scholar 

  2. Clement BA, Goff CM, Forbes TDA . Toxic amines and alkaloids from Acacia berlandieri. Phytochemistry 1997; 46: 249–254.

    Article  CAS  Google Scholar 

  3. Clement BA, Goff CM, Forbes TDA . Toxic amines and alkaloids from Acacia rigidula. Phytochemistry 1998; 49: 1377–1380.

    Article  CAS  Google Scholar 

  4. Goodman LS, Hardman JG, Limbird LE, Gilman AG . Goodman & Gilman's The Pharmacological Basis of Therapeutics. McGraw-Hill: New York, 2001.

    Google Scholar 

  5. Madras BK, Miller GM, Fischman AJ . The dopamine transporter and attention-deficit/hyperactivity disorder. Biol Psychiatry 2005; 57: 1397–1409.

    Article  CAS  PubMed  Google Scholar 

  6. Boutrel B, Koob GF . What keeps us awake: the neuropharmacology of stimulants and wakefulness-promoting medications. Sleep 2004; 27: 1181–1194.

    Article  PubMed  Google Scholar 

  7. Elia J, Borcherding BG, Potter WZ, Mefford IN, Rapoport JL, Keysor CS . Stimulant drug treatment of hyperactivity: biochemical correlates. Clin Pharmacol Ther 1990; 48: 57–66.

    Article  CAS  PubMed  Google Scholar 

  8. Kuczenski R, Segal DS, Cho AK, Melega W . Hippocampus norepinephrine, caudate dopamine and serotonin, and behavioral responses to the stereoisomers of amphetamine and methamphetamine. J Neurosci 1995; 15: 1308–1317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bradley C . The behavior of children receiving benzedrine. Am J Psychiatry 1937; 94: 577–585.

    Article  Google Scholar 

  10. International Narcotics Control Board Staff. Psychotropic Substances. United Nations Publications: New York, 2004.

  11. Education USDo. Identifying and Treating Attention Deficit Hyperactivity Disorder: a Resource for School and Home. U.S. Department of Education, Office of Special Education and Rehabilitative Services, Office of Special Education Programs: Washington, D.C., 2003.

  12. Zametkin AJ, Nordahl TE, Gross M, King AC, Semple WE, Rumsey J et al. Cerebral glucose metabolism in adults with hyperactivity of childhood onset. N Engl J Med 1990; 323: 1361–1366.

    Article  CAS  PubMed  Google Scholar 

  13. Goldman LS, Genel M, Bezman RJ, Slanetz PJ . Diagnosis and treatment of attention-deficit/hyperactivity disorder in children and adolescents. Council on Scientific Affairs, American Medical Association. J Am Med Assoc 1998; 279: 1100–1107.

    Article  CAS  Google Scholar 

  14. McGough JJ, Biederman J, Greenhill LL, McCracken JT, Spencer TJ, Posner K et al. Pharmacokinetics of SLI381 (ADDERALL XR), an extended-release formulation of Adderall. J Am Acad Child Adolesc Psychiatry 2003; 42: 684–691.

    Article  PubMed  Google Scholar 

  15. Goodman DW . Lisdexamfetamine dimesylate: the first prodrug stimulant. Psychiatry MMC 2007; advance online publication August 2007; available at: http://www.psychiatrymmc.com/lisdexamfetamine-dimesylate-the-first-prodrug-stimulant/.

  16. Adler L et al. Efficacy and Safety of Lisdexamfetamine Dimesylate in Adults with Attention Deficit Hyperactvity Disorder. American Academy of Child and Adolescent Psychiatry Annual Meeting; 25 October 2007: Boston, MA, 2007.

    Google Scholar 

  17. Connor DF, Steingard RJ . New formulations of stimulants for attention-deficit hyperactivity disorder: therapeutic potential. CNS Drugs 2004; 18: 1011–1030.

    Article  CAS  PubMed  Google Scholar 

  18. Wilens TE . Drug therapy for adults with attention-deficit hyperactivity disorder. Drugs 2003; 63: 2395–2411.

    Article  CAS  PubMed  Google Scholar 

  19. Wilens TE, Faraone SV, Biederman J . Attention-deficit/hyperactivity disorder in adults. J Am Med Assoc 2004; 292: 619–623.

    Article  CAS  Google Scholar 

  20. Volkow ND, Insel TR . What are the long-term effects of methylphenidate treatment? Biol Psychiatry 2003; 54: 1307–1309.

    Article  PubMed  Google Scholar 

  21. Mitler MM, Aldrich MS, Koob GF, Zarcone VP . Narcolepsy and its treatment with stimulants. ASDA standards of practice. Sleep 1994; 17: 352–371.

    Article  CAS  PubMed  Google Scholar 

  22. Mitler MM, Hajdukovic R . Relative efficacy of drugs for the treatment of sleepiness in narcolepsy. Sleep 1991; 14: 218–220.

    Article  CAS  PubMed  Google Scholar 

  23. National Toxicology Program. NTP-CERHR monograph on the potential human reproductive and developmental effects of amphetamines. 2005, report no. 16; available at: http://cerhr.niehs.nih.gov/chemicals/stimulants/amphetamines/AmphetamineMonograph.pdf.

  24. American Academy of Pediatrics. Subcommittee on Attention-Deficit/Hyperactivity Disorder and Committee on Quality Improvement. Clinical practice guideline: treatment of the school-aged child with attention-deficit/hyperactivity disorder. Pediatrics 2001; 108: 1033–1044.

    Article  Google Scholar 

  25. Efron D, Jarman F, Barker M . Side effects of methylphenidate and dexamphetamine in children with attention deficit hyperactivity disorder: a double-blind, crossover trial. Pediatrics 1997; 100: 662–666.

    Article  CAS  PubMed  Google Scholar 

  26. Frishman WH, Del VA, Sanal S, Ismail A . Cardiovascular manifestations of substance abuse: part 2: alcohol, amphetamines, heroin, cannabis, and caffeine. Heart Dis 2003; 5: 253–271.

    Article  PubMed  Google Scholar 

  27. Safer DJ, Zito JM, dosReis S . Concomitant psychotropic medication for youths. Am J Psychiatry 2003; 160: 438–449.

    Article  PubMed  Google Scholar 

  28. dosReis S, Zito JM, Safer DJ, Gardner JF, Puccia KB, Owens PL . Multiple psychotropic medication use for youths: a two-state comparison. J Child Adolesc Psychopharmacol 2005; 15: 68–77.

    Article  PubMed  Google Scholar 

  29. CDC. Attention-deficit/hyperactivity disorder (ADHD). 2005 (cited 23 January 2008/); Available from: http://www.cdc.gov/ncbddd/adhd/.

  30. Biederman J, Faraone SV . Current concepts on the neurobiology of attention-deficit/hyperactivity disorder. J Atten Disord 2002; 6 (Suppl 1): S7–S16.

    Article  PubMed  Google Scholar 

  31. Faraone SV, Biederman J, Spencer TJ, Aleardi M . Comparing the efficacy of medications for ADHD using meta-analysis. Med Gen Med 2006; 8: 4.

    Google Scholar 

  32. Faber A, Kalverdijk LJ, de Jong-van den Berg LT, Hugtenburg JG, Minderaa RB, Tobi H . Parents report on stimulant-treated children in the Netherlands: initiation of treatment and follow-up care. J Child Adolesc Psychopharmacol 2006; 16: 432–440.

    Article  PubMed  Google Scholar 

  33. Preen DB, Calver J, Sanfilippo FM, Bulsara M, Holman CD . Patterns of psychostimulant prescribing to children with ADHD in Western Australia: variations in age, gender, medication type and dose prescribed. Aust N Z J Public Health 2007; 31: 120–126.

    Article  PubMed  Google Scholar 

  34. Sankaranarayanan J, Puumala SE, Kratochvil CJ . Diagnosis and treatment of adult attention-deficit/hyperactivity disorder at US ambulatory care visits from 1996 to 2003. Curr Med Res Opin 2006; 22: 1475–1491.

    Article  CAS  PubMed  Google Scholar 

  35. Wu EQ, Birnbaum HG, Zhang HF, Ivanova JI, Yang E, Mallet D . Health care costs of adults treated for attention-deficit/hyperactivity disorder who received alternative drug therapies. J Manag Care Pharm 2007; 13: 561–569.

    PubMed  Google Scholar 

  36. Brown GL, Hunt RD, Ebert MH, Bunney Jr WE, Kopin IJ . Plasma levels of D-amphetamine in hyperactive children. Serial behavior and motor responses. Psychopharmacology (Berlin) 1979; 62: 133–140.

    Article  CAS  Google Scholar 

  37. Thorpy M . Therapeutic advances in narcolepsy. Sleep Med 2007; 8: 427–440.

    Article  PubMed  Google Scholar 

  38. Dowling GJ, Weiss SR, Condon TP . Drugs of abuse and the aging brain. Neuropsychopharmacology 2008; 33: 209–218.

    Article  CAS  PubMed  Google Scholar 

  39. Substance A, Mental Health Services A. Detailed emergency department tables from DAWN. 2002 (cited 23 January 2008); available from: http://dawninfo.samhsa.gov/old_dawn/pubs_94_02/pickatable/2001/2.8.0.xls.

  40. Gfroerer J, Penne M, Pemberton M, Folsom R . Substance abuse treatment need among older adults in 2020: the impact of the aging baby-boom cohort. Drug Alcohol Depend 2003; 69: 127–135.

    Article  PubMed  Google Scholar 

  41. Bowyer JF, Holson RR, Chang LW, Dyer RS . Methamphetamine and Amphetamine Neurotoxicity. Handbook of Neurotoxicology. Marcel Dekker Inc.: New York, 1995, pp 845–870.

    Google Scholar 

  42. Seiden LS, Sabol KE, Chang LW, Dyer RS . Neurotoxicity of Methamphetamine-Related Drugs and Cocaine. Handbook of Neurotoxicology. Marcel Dekker Inc.: New York, 1995, pp 825–843.

    Google Scholar 

  43. Kita T, Wagner GC, Nakashima T . Current research on methamphetamine-induced neurotoxicity: animal models of monoamine disruption. J Pharmacol Sci 2003; 92: 178–195.

    Article  CAS  PubMed  Google Scholar 

  44. Selemon LD, Begovic A, Goldman-Rakic PS, Castner SA . Amphetamine sensitization alters dendritic morphology in prefrontal cortical pyramidal neurons in the non-human primate. Neuropsychopharmacology 2007; 32: 919–931.

    Article  CAS  PubMed  Google Scholar 

  45. Tata DA, Yamamoto BK . Interactions between methamphetamine and environmental stress: role of oxidative stress, glutamate and mitochondrial dysfunction. Addiction 2007; 102 (Suppl 1): 49–60.

    Article  PubMed  Google Scholar 

  46. Segal DS, Kuczenski R . Escalating dose-binge treatment with methylphenidate: role of serotonin in the emergent behavioral profile. J Pharmacol Exp Ther 1999; 291: 19–30.

    CAS  PubMed  Google Scholar 

  47. Yuan J, McCann U, Ricaurte G . Methylphenidate and brain dopamine neurotoxicity. Brain Res 1997; 767: 172–175.

    Article  CAS  PubMed  Google Scholar 

  48. Fischer JF, Cho AK . Chemical release of dopamine from striatal homogenates: evidence for an exchange diffusion model. J Pharmacol Exp Ther 1979; 208: 203–209.

    CAS  PubMed  Google Scholar 

  49. Krueger BK . Kinetics and block of dopamine uptake in synaptosomes from rat caudate nucleus. J Neurochem 1990; 55: 260–267.

    Article  CAS  PubMed  Google Scholar 

  50. Segal DS, Kuczenski R . Repeated binge exposure to amphetamine and methamphetamine: behavioral and neurochemical characterization. J Pharmacol Exp Ther 1997; 282: 561–573.

    CAS  PubMed  Google Scholar 

  51. Melega WP, Raleigh MJ, Stout DB, Lacan G, Huang SC, Phelps ME . Recovery of striatal dopamine function after acute amphetamine- and methamphetamine-induced neurotoxicity in the vervet monkey. Brain Res 1997; 766: 113–120.

    Article  CAS  PubMed  Google Scholar 

  52. Moll GH, Hause S, Ruther E, Rothenberger A, Huether G . Early methylphenidate administration to young rats causes a persistent reduction in the density of striatal dopamine transporters. J Child Adolesc Psychopharmacol 2001; 11: 15–24.

    Article  CAS  PubMed  Google Scholar 

  53. Ricaurte GA, Mechan AO, Yuan J, Hatzidimitriou G, Xie T, Mayne AH et al. Amphetamine treatment similar to that used in the treatment of adult attention-deficit/hyperactivity disorder damages dopaminergic nerve endings in the striatum of adult nonhuman primates. J Pharmacol Exp Ther 2005; 315: 91–98.

    Article  CAS  PubMed  Google Scholar 

  54. Borcherding BG, Keysor CS, Cooper TB, Rapoport JL . Differential effects of methylphenidate and dextroamphetamine on the motor activity level of hyperactive children. Neuropsychopharmacology 1989; 2: 255–263.

    Article  CAS  PubMed  Google Scholar 

  55. Greenhill LL, Swanson JM, Steinhoff K, Fried J, Posner K, Lerner M et al. A pharmacokinetic/pharmacodynamic study comparing a single morning dose of adderall to twice-daily dosing in children with ADHD. J Am Acad Child Adolesc Psychiatry 2003; 42: 1234–1241.

    Article  PubMed  Google Scholar 

  56. Anderson LI, Leipheimer RE, Dluzen DE . Effects of neonatal and prepubertal hormonal manipulations upon estrogen neuroprotection of the nigrostriatal dopaminergic system within female and male mice. Neuroscience 2005; 130: 369–382.

    Article  CAS  PubMed  Google Scholar 

  57. Bowyer JF, Gough B, Slikker Jr W, Lipe GW, Newport GD, Holson RR . Effects of a cold environment or age on methamphetamine-induced dopamine release in the caudate putamen of female rats. Pharmacol Biochem Behav 1993; 44: 87–98.

    Article  CAS  PubMed  Google Scholar 

  58. Miller DB, O’Callaghan JP, Ali SF . Age as a susceptibility factor in the striatal dopaminergic neurotoxicity observed in the mouse following substituted amphetamine exposure. Ann NY Acad Sci 2000; 914: 194–207.

    Article  CAS  PubMed  Google Scholar 

  59. Teuchert-Noodt G, Dawirs RR . Age-related toxicity in prefrontal cortex and caudate-putamen complex of gerbils (Meriones unguiculatus) after a single dose of methamphetamine. Neuropharmacology 1991; 30: 733–743.

    Article  CAS  PubMed  Google Scholar 

  60. Truex LL, Schmidt MJ . 3H-amphetamine concentrations in the brains of young and aged rats: implications for assessment of drug effects in aged animals. Neurobiol Aging 1980; 1: 93–95.

    Article  CAS  PubMed  Google Scholar 

  61. O’Neil ML, Kuczenski R, Segal DS, Cho AK, Lacan G, Melega WP . Escalating dose pretreatment induces pharmacodynamic and not pharmacokinetic tolerance to a subsequent high-dose methamphetamine binge. Synapse 2006; 60: 465–473.

    Article  PubMed  CAS  Google Scholar 

  62. Segal DS, Kuczenski R, O’Neil ML, Melega WP, Cho AK . Escalating dose methamphetamine pretreatment alters the behavioral and neurochemical profiles associated with exposure to a high-dose methamphetamine binge. Neuropsychopharmacology 2003; 28: 1730–1740.

    Article  CAS  PubMed  Google Scholar 

  63. Carlsson A, Winblad B . Influence of age and time interval between death and autopsy on dopamine and 3-methoxytyramine levels in human basal ganglia. J Neural Transm 1976; 38: 271–276.

    Article  CAS  PubMed  Google Scholar 

  64. Carlsson A . Aging and brain neurotransmitters. In: Platt D (ed). Funkitionsstorurgen des Gehirns im Alter. Stuttgart-New York: Schattauer, 1981, pp 67–81.

    Google Scholar 

  65. Advokat C . Update on amphetamine neurotoxicity and its relevance to the treatment of ADHD. J Atten Disord 2007; 11: 8–16.

    Article  PubMed  Google Scholar 

  66. Poulton A . Growth on stimulant medication; clarifying the confusion: a review. Arch Dis Child 2005; 90: 801–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pliszka SR, Matthews TL, Braslow KJ, Watson MA . Comparative effects of methylphenidate and mixed salts amphetamine on height and weight in children with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2006; 45: 520–526.

    Article  PubMed  Google Scholar 

  68. Spencer TJ, Faraone SV, Biederman J, Lerner M, Cooper KM, Zimmerman B . Does prolonged therapy with a long-acting stimulant suppress growth in children with ADHD? J Am Acad Child Adolesc Psychiatry 2006; 45: 527–537.

    Article  PubMed  Google Scholar 

  69. Swanson JM, Elliott GR, Greenhill LL, Wigal T, Arnold LE, Vitiello B et al. Effects of stimulant medication on growth rates across 3 years in the MTA follow-up. J Am Acad Child Adolesc Psychiatry 2007; 46: 1015–1027.

    Article  PubMed  Google Scholar 

  70. Charach A, Figueroa M, Chen S, Ickowicz A, Schachar R . Stimulant treatment over 5 years: effects on growth. J Am Acad Child Adolesc Psychiatry 2006; 45: 415–421.

    Article  PubMed  Google Scholar 

  71. Swanson J, Greenhill L, Wigal T, Kollins S, Stehli A, Davies M et al. Stimulant-related reductions of growth rates in the PATS. J Am Acad Child Adolesc Psychiatry 2006; 45: 1304–1313.

    Article  PubMed  Google Scholar 

  72. Srisurapanont M, Jarusuraisin N, Kittirattanapaiboon P . Treatment for amphetamine dependence and abuse. Cochrane Database Syst Rev 2001; (4) CD003022.

  73. Hill KP, Sofuoglu M . Biological treatments for amfetamine dependence: recent progress. CNS Drugs 2007; 21: 851–869.

    Article  CAS  PubMed  Google Scholar 

  74. Executive Board AAoP. Use of D-amphetamine and related central nervous system stimulants in children. Pediatrics 1973; 51: 302–305.

    Google Scholar 

  75. Johnston LD, O’Malley PM, Bachman JG, Schulenberg JE . Monitoring the Future National Survey Results on Drug Use, 1975–2006: Volume I, Secondary School Students. National Institute on Drug Abuse: Bethesda, MD, 2007.

    Google Scholar 

  76. Rawson RA, Condon TP . Why do we need an addiction supplement focused on methamphetamine? Addiction 2007; 102 (Suppl 1): 1–4.

    Article  PubMed  Google Scholar 

  77. Sato M, Hida M, Nagase H . Analysis of pyrolysis products of methamphetamine. J Anal Toxicol 2004; 28: 638–643.

    Article  CAS  PubMed  Google Scholar 

  78. Musser CJ, Ahmann PA, Theye FW, Mundt P, Broste SK, Mueller-Rizner N . Stimulant use and the potential for abuse in Wisconsin as reported by school administrators and longitudinally followed children. J Dev Behav Pediatr 1998; 19: 187–192.

    Article  CAS  PubMed  Google Scholar 

  79. McCabe SE, Teter CJ, Boyd CJ . The use, misuse and diversion of prescription stimulants among middle and high school students. Subst Use Misuse 2004; 39: 1095–1116.

    Article  PubMed  Google Scholar 

  80. McCabe SE, Teter CJ, Boyd CJ . Medical use, illicit use and diversion of prescription stimulant medication. J Psychoactive Drugs 2006; 38: 43–56.

    Article  PubMed  PubMed Central  Google Scholar 

  81. McCabe SE, Teter CJ, Boyd CJ . Medical use, illicit use, and diversion of abusable prescription drugs. J Am Coll Health 2006; 54: 269–278.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Poulin C . Medical and nonmedical stimulant use among adolescents: from sanctioned to unsanctioned use. CMAJ 2001; 165: 1039–1044.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Farris KB, McCarthy AM, Kelly MW, Clay D, Gross JN . Issues of medication administration and control in Iowa schools. J Sch Health 2003; 73: 331–337.

    Article  PubMed  Google Scholar 

  84. Reiterman T . Prescriptions supplanting illegal substances as drugs of choice. Los Angeles Times, May 18, 2008, Section A, 1p.

  85. Bassetti C, Aldrich MS . Narcolepsy. Neurol Clin 1996; 14: 545–571.

    Article  CAS  PubMed  Google Scholar 

  86. Stoops WW, Glaser PE, Fillmore MT, Rush CR . Reinforcing, subject-rated, performance and physiological effects of methylphenidate and D-amphetamine in stimulant abusing humans. J Psychopharmacol 2004; 18: 534–543.

    Article  CAS  PubMed  Google Scholar 

  87. Kollins SH . Comparing the abuse potential of methylphenidate versus other stimulants: a review of available evidence and relevance to the ADHD patient. J Clin Psychiatry 2003; 64 (Suppl 11): 14–18.

    CAS  PubMed  Google Scholar 

  88. Stoops WW, Lile JA, Glaser PE, Rush CR . Discriminative stimulus and self-reported effects of methylphenidate, D-amphetamine, and triazolam in methylphenidate-trained humans. Exp Clin Psychopharmacol 2005; 13: 56–64.

    Article  CAS  PubMed  Google Scholar 

  89. Spencer TJ, Biederman J, Ciccone PE, Madras BK, Dougherty DD, Bonab AA et al. PET study examining pharmacokinetics, detection and likeability, and dopamine transporter receptor occupancy of short- and long-acting oral methylphenidate. Am J Psychiatry 2006; 163: 387–395.

    Article  PubMed  Google Scholar 

  90. Jasinski D, Krishnan S . A Double-Blind, Randomized, Placebo- and Active-Controlled, 6-Period Crossover Study to Evaluate the Likeability, Safety, and Abuse Potential of Lisdexamfetamine Dimesylate (LDX) in Adult Stimulant Abusers. U.S. Psychiatric & Mental Health Congress: New Orleans, LA, 2006.

    Google Scholar 

  91. Jasinski D, Krishnan S . Abuse Liability of Intravenous Lisdexamfetamine Dimesylate (LDX; NRP104). U.S. Psychiatric & Mental Health Congress: New Orleans, LA, 2006.

    Book  Google Scholar 

  92. Wilens TE, Fusillo S . When ADHD and substance use disorders intersect: relationship and treatment implications. Curr Psychiatry Rep 2007; 9: 408–414.

    Article  PubMed  Google Scholar 

  93. Wilens TE, Adamson J, Sgambati S, Whitley J, Santry A, Monuteaux MC et al. Do individuals with ADHD self-medicate with cigarettes and substances of abuse? Results from a controlled family study of ADHD. Am J Addict 2007; 16 (Suppl 1): 14–21.

    Article  PubMed  Google Scholar 

  94. Lambert NM, Hartsough CS . Prospective study of tobacco smoking and substance dependencies among samples of ADHD and non-ADHD participants. J Learn Disabil 1998; 31: 533–544.

    Article  CAS  PubMed  Google Scholar 

  95. Lambert NM, McLeod M, Schenk S . Subjective responses to initial experience with cocaine: an exploration of the incentive-sensitization theory of drug abuse. Addiction 2006; 101: 713–725.

    Article  PubMed  Google Scholar 

  96. Kollins SH, MacDonald EK, Rush CR . Assessing the abuse potential of methylphenidate in nonhuman and human subjects: a review. Pharmacol Biochem Behav 2001; 68: 611–627.

    Article  CAS  PubMed  Google Scholar 

  97. Vitiello B . Long-term effects of stimulant medications on the brain: possible relevance to the treatment of attention deficit hyperactivity disorder. J Child Adolesc Psychopharmacol 2001; 11: 25–34.

    Article  CAS  PubMed  Google Scholar 

  98. Wilens TE, Faraone SV, Biederman J, Gunawardene S . Does stimulant therapy of attention-deficit/hyperactivity disorder beget later substance abuse? A meta-analytic review of the literature. Pediatrics 2003; 111: 179–185.

    Article  PubMed  Google Scholar 

  99. Kuczenski R, Segal DS . Exposure of adolescent rats to oral methylphenidate: preferential effects on extracellular norepinephrine and absence of sensitization and cross-sensitization to methamphetamine. J Neurosci 2002; 22: 7264–7271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Andersen MB, Fuxe K, Werge T, Gerlach J . The adenosine A2A receptor agonist CGS 21680 exhibits antipsychotic-like activity in Cebus apella monkeys. Behav Pharmacol 2002; 13: 639–644.

    Article  CAS  PubMed  Google Scholar 

  101. Mague SD, Andersen SL, Carlezon Jr WA . Early developmental exposure to methylphenidate reduces cocaine-induced potentiation of brain stimulation reward in rats. Biol Psychiatry 2005; 57: 120–125.

    Article  CAS  PubMed  Google Scholar 

  102. Brandon CL, Marinelli M, Baker LK, White FJ . Enhanced reactivity and vulnerability to cocaine following methylphenidate treatment in adolescent rats. Neuropsychopharmacology 2001; 25: 651–661.

    Article  CAS  PubMed  Google Scholar 

  103. Mannuzza S, Klein RG, Truong NL, Moulton III JL, Roizen ER, Howell KH et al. Age of methylphenidate treatment initiation in children with ADHD and later substance abuse: prospective follow-up into adulthood. Am J Psychiatry 2008; 165: 604–609.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Spear LP . The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 2000; 24: 417–463.

    Article  CAS  PubMed  Google Scholar 

  105. Holland PC, Gallagher M . Amygdala circuitry in attentional and representational processes. Trends Cogn Sci 1999; 3: 65–73.

    Article  CAS  PubMed  Google Scholar 

  106. Frantz K, Van Hartesveldt C . The locomotor effects of MK801 in the nucleus accumbens of developing and adult rats. Eur J Pharmacol 1999; 368: 125–135.

    Article  CAS  PubMed  Google Scholar 

  107. Teicher MHA, Andersen SL . Limbic Serotonin Turnover Plunges During Puberty. Society for Neuroscience Annual Conference: Miami Beach, FL, 1999.

    Google Scholar 

  108. Kalsbeek A, Voorn P, Buijs RM, Pool CW, Uylings HB . Development of the dopaminergic innervation in the prefrontal cortex of the rat. J Comp Neurol 1988; 269: 58–72.

    Article  CAS  PubMed  Google Scholar 

  109. Leslie CA, Robertson MW, Cutler AJ, Bennett Jr JP . Postnatal development of D1 dopamine receptors in the medial prefrontal cortex, striatum and nucleus accumbens of normal and neonatal 6-hydroxydopamine treated rats: a quantitative autoradiographic analysis. Brain Res Dev Brain Res 1991; 62: 109–114.

    Article  CAS  PubMed  Google Scholar 

  110. van Eden CGK, Kros JM, Uylings HBM . The development of the rat prefrontal cortex: its size and development of connections with thalamus, spinal cord and other cortical areas. In: Uylings HBM, van Eden CG, De Bruin JPC, Corner MA, Feenstra MGP (eds). Progress in Brain Research, The Prefrontal Cortex: its Structure, Function and Pathology. Elsevier: Amsterdam, 1990, pp 169–183.

    Google Scholar 

  111. Kellogg CK, Awatramani GB, Piekut DT . Adolescent development alters stressor-induced Fos immunoreactivity in rat brain. Neuroscience 1998; 83: 681–689.

    Article  CAS  PubMed  Google Scholar 

  112. Heimer LdO J, Alheid GF, Zaborszky L . Perestroika in the basal forebrain: opening the border between neurology and psychiatry. In: Holstege G (ed). Progress in Brain Research, Role of the Forebrain in Sensation and Behavior, vol. 87 Elsevier: Amsterdam, 1991, pp 109–165.

    Chapter  Google Scholar 

  113. Powell EW, Leman RB . Connections of the nucleus accumbens. Brain Res 1976; 105: 389–403.

    Article  CAS  PubMed  Google Scholar 

  114. Risold PY, Thompson RH, Swanson LW . The structural organization of connections between hypothalamus and cerebral cortex. Brain Res Brain Res Rev 1997; 24: 197–254.

    Article  CAS  PubMed  Google Scholar 

  115. Saphier D, Feldman S . Effects of neural stimuli on paraventricular nucleus neurones. Brain Res Bull 1985; 14: 401–407.

    Article  CAS  PubMed  Google Scholar 

  116. Bolanos CA, Glatt SJ, Jackson D . Subsensitivity to dopaminergic drugs in periadolescent rats: a behavioral and neurochemical analysis. Brain Res Dev Brain Res 1998; 111: 25–33.

    Article  CAS  PubMed  Google Scholar 

  117. Lanier LP, Isaacson RL . Early developmental changes in the locomotor response to amphetamine and their relation to hippocampal function. Brain Res 1977; 126: 567–575.

    Article  CAS  PubMed  Google Scholar 

  118. Laviola G, Adriani W, Terranova ML, Gerra G . Psychobiological risk factors for vulnerability to psychostimulants in human adolescents and animal models. Neurosci Biobehav Rev 1999; 23: 993–1010.

    Article  CAS  PubMed  Google Scholar 

  119. McKinzie DLM, McBride WJ, Murphy JM, Lumeng L, Li T-K . Rat lines selectively bred for alcohol preference: a potential animal model of adolescent alcohol drinking. In: Hannigan JHS, Spear LP, Spear NE, Goodlett CR (eds). Alcohol and Alcoholism: Effects on Brain and Development. Lawrence Erlbaum Associates: Mahwah, NJ, 1999, pp 135–160.

    Google Scholar 

  120. Snyder KJ, Katovic NM, Spear LP . Longevity of the expression of behavioral sensitization to cocaine in preweanling rats. Pharmacol Biochem Behav 1998; 60: 909–914.

    Article  CAS  PubMed  Google Scholar 

  121. Spear LP, Brick J . Cocaine-induced behavior in the developing rat. Behav Neural Biol 1979; 26: 401–415.

    Article  CAS  PubMed  Google Scholar 

  122. Karreman M, Moghaddam B . The prefrontal cortex regulates the basal release of dopamine in the limbic striatum: an effect mediated by ventral tegmental area. J Neurochem 1996; 66: 589–598.

    Article  CAS  PubMed  Google Scholar 

  123. Karler R, Calder LD, Thai DK, Bedingfield JB . The role of dopamine and GABA in the frontal cortex of mice in modulating a motor-stimulant effect of amphetamine and cocaine. Pharmacol Biochem Behav 1998; 60: 237–244.

    Article  CAS  PubMed  Google Scholar 

  124. Kolachana BS, Saunders RC, Weinberger DR . Augmentation of prefrontal cortical monoaminergic activity inhibits dopamine release in the caudate nucleus: an in vivo neurochemical assessment in the rhesus monkey. Neuroscience 1995; 69: 859–868.

    Article  CAS  PubMed  Google Scholar 

  125. Cappon GD, Vorhees CV . Plasma and brain methamphetamine concentrations in neonatal rats. Neurotoxicol Teratol 2001; 23: 81–88.

    Article  CAS  PubMed  Google Scholar 

  126. Crawford CA, Williams MT, Newman ER, McDougall SA, Vorhees CV . Methamphetamine exposure during the preweanling period causes prolonged changes in dorsal striatal protein kinase A activity, dopamine D2-like binding sites, and dopamine content. Synapse 2003; 48: 131–137.

    Article  CAS  PubMed  Google Scholar 

  127. Lucot JB, Wagner GC, Schuster CR, Seiden LS . Decreased sensitivity of rat pups to long-lasting dopamine and serotonin depletions produced by methylamphetamine. Brain Res 1982; 247: 181–183.

    Article  CAS  PubMed  Google Scholar 

  128. Pu C, Vorhees CV . Developmental dissociation of methamphetamine-induced depletion of dopaminergic terminals and astrocyte reaction in rat striatum. Brain Res Dev Brain Res 1993; 72: 325–328.

    Article  CAS  PubMed  Google Scholar 

  129. Wagner GC, Schuster CR, Seiden LS . Neurochemical consequences following administration of CNS stimulants to the neonatal rat. Pharmacol Biochem Behav 1981; 14: 117–119.

    Article  CAS  PubMed  Google Scholar 

  130. Rice D, Barone Jr S . Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 2000; 108 (Suppl. 3): 511–533.

    PubMed  PubMed Central  Google Scholar 

  131. Kokoshka JM, Fleckenstein AE, Wilkins DG, Hanson GR . Age-dependent differential responses of monoaminergic systems to high doses of methamphetamine. J Neurochem 2000; 75: 2095–2102.

    Article  CAS  PubMed  Google Scholar 

  132. Riddle EL, Kokoshka JM, Wilkins DG, Hanson GR, Fleckenstein AE . Tolerance to the neurotoxic effects of methamphetamine in young rats. Eur J Pharmacol 2002; 435: 181–185.

    Article  CAS  PubMed  Google Scholar 

  133. Biederman J, Monuteaux MC, Spencer T, Wilens TE, Macpherson HA, Faraone SV . Stimulant therapy and risk for subsequent substance use disorders in male adults with ADHD: a naturalistic controlled 10-year follow-up study. Am J Psychiatry 2008; 165: 597–603.

    Article  PubMed  Google Scholar 

  134. Berman SM, O’Neill J, Fears S, Bartzokis G, London ED . Abuse of amphetamines and structural abnormalities in brain. In: Uhl G (ed). Addiction Reviews, vol. 1 NY Academy of Sciences: New York, 2008.

    Google Scholar 

  135. Jaffe JH . Drug addiction and drug abuse. In: Goodman LS, Gilman A (ed). Pharmacological Basis of Therapeutics. McMillan: New York, 1985, pp 284–324.

    Google Scholar 

  136. Volkow NDC, LW, Wang GJ, Fowler JS, Franceschi D, Gatley SJ et al. In vivo evidence that methamphetamine abuse produces long lasting changes in dopamine transporters in human brain. J Nucl Med Suppl 1999; 40(Suppl): 110.

  137. McCann UD, Wong DF, Yokoi F, Villemagne V, Dannals RF, Ricaurte GA . Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: evidence from positron emission tomography studies with [11C]WIN-35 428. J Neurosci 1998; 18: 8417–8422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Simon SL, Richardson K, Dacey J, Glynn S, Domier CP, Rawson RA et al. A comparison of patterns of methamphetamine and cocaine use. J Addict Dis 2002; 21: 35–44.

    Article  PubMed  Google Scholar 

  139. Wilson JM, Kalasinsky KS, Levey AI, Bergeron C, Reiber G, Anthony RM et al. Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nat Med 1996; 2: 699–703.

    Article  CAS  PubMed  Google Scholar 

  140. Kalechstein AD, Newton TF, Longshore D, Anglin MD, van Gorp WG, Gawin FH . Psychiatric comorbidity of methamphetamine dependence in a forensic sample. J Neuropsychiatry Clin Neurosci 2000; 12: 480–484.

    Article  CAS  PubMed  Google Scholar 

  141. Volkow ND, Chang L, Wang GJ, Fowler JS, Leonido-Yee M, Franceschi D et al. Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am J Psychiatry 2001; 158: 377–382.

    Article  CAS  PubMed  Google Scholar 

  142. Melega WP, Cho AK, Harvey D, Lacan G . Methamphetamine blood concentrations in human abusers: application to pharmacokinetic modeling. Synapse 2007; 61: 216–220.

    Article  CAS  PubMed  Google Scholar 

  143. Chang L, Alicata D, Ernst T, Volkow N . Structural and metabolic brain changes in the striatum associated with methamphetamine abuse. Addiction 2007; 102 (Suppl 1): 16–32.

    Article  PubMed  Google Scholar 

  144. Moszczynska A, Fitzmaurice P, Ang L, Kalasinsky KS, Schmunk GA, Peretti FJ et al. Why is parkinsonism not a feature of human methamphetamine users? Brain 2004; 127: 363–370.

    Article  PubMed  Google Scholar 

  145. Wilson JM, Kalasinsky KS, Levey AI, Bergeron C, Reiber G, Anthony RM et al. Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nat Med 1996; 2: 699–703.

    Article  CAS  PubMed  Google Scholar 

  146. Frey K, Kilbourn M, Robinson T . Reduced striatal vesicular monoamine transporters after neurotoxic but not after behaviorally-sensitizing doses of methamphetamine. Eur J Pharmacol 1997; 334: 273–279.

    Article  CAS  PubMed  Google Scholar 

  147. Fumagalli F, Gainetdinov RR, Wang YM, Valenzano KJ, Miller GW, Caron MG . Increased methamphetamine neurotoxicity in heterozygous vesicular monoamine transporter 2 knock-out mice. J Neurosci 1999; 19: 2424–2431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Harvey DC, Lacan G, Tanious SP, Melega WP . Recovery from methamphetamine induced long-term nigrostriatal dopaminergic deficits without substantia nigra cell loss. Brain Res 2000; 871: 259–270.

    Article  CAS  PubMed  Google Scholar 

  149. Hogan KA, Staal RG, Sonsalla PK . Analysis of VMAT2 binding after methamphetamine or MPTP treatment: disparity between homogenates and vesicle preparations. J Neurochem 2000; 74: 2217–2220.

    Article  CAS  PubMed  Google Scholar 

  150. Kilbourn MR, Frey KA, Vander BT, Sherman PS . Effects of dopaminergic drug treatments on in vivo radioligand binding to brain vesicular monoamine transporters. Nucl Med Biol 1996; 23: 467–471.

    Article  CAS  PubMed  Google Scholar 

  151. Miller GW, Gainetdinov RR, Levey AI, Caron MG . Dopamine transporters and neuronal injury. Trends Pharmacol Sci 1999; 20: 424–429.

    Article  CAS  PubMed  Google Scholar 

  152. Vander BT, Kilbourn M, Desmond T, Kuhl D, Frey K . The vesicular monoamine transporter is not regulated by dopaminergic drug treatments. Eur J Pharmacol 1995; 294: 577–583.

    Article  Google Scholar 

  153. London ED, Simon SL, Berman SM, Mandelkern MA, Lichtman AM, Bramen J et al. Mood disturbances and regional cerebral metabolic abnormalities in recently abstinent methamphetamine abusers. Arch Gen Psychiatry 2004; 61: 73–84.

    Article  PubMed  Google Scholar 

  154. Berman SM, Voytek B, Mandelkern MA, Hassid BD, Isaacson A, Monterosso J et al. Changes in cerebral glucose metabolism during early abstinence from chronic methamphetamine abuse. Mol Psychiatry 2007; e-pub: 16 October 2007.

  155. Volkow ND, Chang L, Wang GJ, Fowler JS, Franceschi D, Sedler MJ et al. Higher cortical and lower subcortical metabolism in detoxified methamphetamine abusers. Am J Psychiatry 2001; 158: 383–389.

    Article  CAS  PubMed  Google Scholar 

  156. Wang GJ, Volkow ND, Chang L, Miller E, Sedler M, Hitzemann R et al. Partial recovery of brain metabolism in methamphetamine abusers after protracted abstinence. Am J Psychiatry 2004; 161: 242–248.

    Article  PubMed  Google Scholar 

  157. Thompson PM, Hayashi K, Simon SL, Geaga JA, Hong MS, Sui Y et al. Structural abnormalities in the brains of human subjects who use methamphetamine. J Neurosci 2004; 24: 6028–6036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Chang L, Cloak C, Patterson K, Grob C, Miller EN, Ernst T . Enlarged striatum in abstinent methamphetamine abusers: a possible compensatory response. Biol Psychiatry 2005; 57: 967–974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Jernigan TL, Gamst AC, Archibald SL, Fennema-Notestine C, Mindt MR, Marcotte TD et al. Effects of methamphetamine dependence and HIV infection on cerebral morphology. Am J Psychiatry 2005; 162: 1461–1472.

    Article  PubMed  Google Scholar 

  160. Ernst T, Chang L, Leonido-Yee M, Speck O . Evidence for long-term neurotoxicity associated with methamphetamine abuse: a 1H MRS study. Neurology 2000; 54: 1344–1349.

    Article  CAS  PubMed  Google Scholar 

  161. Nordahl TE, Salo R, Natsuaki Y, Galloway GP, Waters C, Moore CD et al. Methamphetamine users in sustained abstinence: a proton magnetic resonance spectroscopy study. Arch Gen Psychiatry 2005; 62: 444–452.

    Article  PubMed  Google Scholar 

  162. Sekine Y, Iyo M, Ouchi Y, Matsunaga T, Tsukada H, Okada H et al. Methamphetamine-related psychiatric symptoms and reduced brain dopamine transporters studied with PET. Am J Psychiatry 2001; 158: 1206–1214.

    Article  CAS  PubMed  Google Scholar 

  163. Sekine Y, Minabe Y, Kawai M, Suzuki K, Iyo M, Isoda H et al. Metabolite alterations in basal ganglia associated with methamphetamine-related psychiatric symptoms: a proton MRS study. Neuropsychopharmacology 2002; 27: 454–461.

    Article  Google Scholar 

  164. Sekine Y, Minabe Y, Ouchi Y, Takei N, Iyo M, Nakamura K et al. Association of dopamine transporter loss in the orbitofrontal and dorsolateral prefrontal cortices with methamphetamine-related psychiatric symptoms. Am J Psychiatry 2003; 160: 1699–1701.

    Article  PubMed  Google Scholar 

  165. Sekine Y, Ouchi Y, Takei N, Yoshikawa E, Nakamura K, Futatsubashi M et al. Brain serotonin transporter density and aggression in abstinent methamphetamine abusers. Arch Gen Psychiatry 2006; 63: 90–100.

    Article  CAS  PubMed  Google Scholar 

  166. Volkow ND, Chang L, Wang GJ, Fowler JS, Leonido-Yee M, Franceschi D et al. Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am J Psychiatry 2001; 158: 377–382.

    Article  CAS  PubMed  Google Scholar 

  167. Volkow ND, Chang L, Wang GJ, Fowler JS, Ding YS, Sedler M et al. Low level of brain dopamine D2 receptors in methamphetamine abusers: association with metabolism in orbitofrontal cortex. Am J Psychiatry 2001; 158: 2015–2021.

    Article  CAS  PubMed  Google Scholar 

  168. London ED, Berman S, Voytek B, Simon SL, Monterosso J, Geaga JA et al. Cerebral metabolic dysfunction and impaired vigilance in recently abstinent methamphetamine abusers. Biol Psychiatry 2005; 58: 770–778.

    Article  CAS  PubMed  Google Scholar 

  169. Hwang J, Lyoo IK, Kim SJ, Sung YH, Bae S, Cho SN et al. Decreased cerebral blood flow of the right anterior cingulate cortex in long-term and short-term abstinent methamphetamine users. Drug Alcohol Depend 2006; 82: 177–181.

    Article  PubMed  Google Scholar 

  170. Volkow ND, Chang L, Wang GJ, Fowler JS, Franceschi D, Sedler M et al. Loss of dopamine transporters in methamphetamine abusers recovers with protracted abstinence. J Neurosci 2001; 21: 9414–9418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. McGregor C, Srisurapanont M, Jittiwutikarn J, Laobhripatr S, Wongtan T, White JM . The nature, time course and severity of methamphetamine withdrawal. Addiction 2005; 100: 1320–1329.

    Article  PubMed  Google Scholar 

  172. Newton TF, Kalechstein AD, Duran S, Vansluis N, Ling W . Methamphetamine abstinence syndrome: preliminary findings. Am J Addict 2002; 13: 248–255.

    Article  Google Scholar 

  173. Pennypacker KR, Kassed CA, Eidizadeh S, O’Callaghan JP . Brain injury: prolonged induction of transcription factors. Acta Neurobiol Exp (Wars) 2000; 60: 515–530.

    CAS  Google Scholar 

  174. Nieuwenhuis S, Aston-Jones G, Cohen JD . Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychol Bull 2005; 131: 510–532.

    Article  PubMed  Google Scholar 

  175. Polich J, Criado JR . Neuropsychology and neuropharmacology of P3a and P3b. Int J Psychophysiol 2006; 60: 172–185.

    Article  PubMed  Google Scholar 

  176. Takeuchi S, Jodo E, Suzuki Y, Matsuki T, Niwa S, Kayama Y . Effects of repeated administration of methamphetamine on P3-like potentials in rats. Int J Psychophysiol 1999; 32: 183–192.

    Article  CAS  PubMed  Google Scholar 

  177. Volkow ND, Gur RC, Wang GJ, Fowler JS, Moberg PJ, Ding YS et al. Association between decline in brain dopamine activity with age and cognitive and motor impairment in healthy individuals. Am J Psychiatry 1998; 155: 344–349.

    Article  CAS  PubMed  Google Scholar 

  178. Volkow ND, Logan J, Fowler JS, Wang GJ, Gur RC, Wong C et al. Association between age-related decline in brain dopamine activity and impairment in frontal and cingulate metabolism. Am J Psychiatry 2000; 157: 75–80.

    Article  CAS  PubMed  Google Scholar 

  179. Volkow ND, Fowler JS, Wang GJ, Hitzemann R, Logan J, Schlyer DJ et al. Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse 1993; 14: 169–177.

    Article  CAS  PubMed  Google Scholar 

  180. Unterharnscheidt F . A neurologist's reflections on boxing. V. Conclude remarks. Rev Neurol 1995; 23: 1027–1032.

    CAS  PubMed  Google Scholar 

  181. Kochunov P, Thompson PM, Coyle TR, Lancaster JL, Kochunov V, Royall D et al. Relationship among neuroimaging indices of cerebral health during normal aging. Hum Brain Mapp 2008; 29: 36–45.

    Article  PubMed  Google Scholar 

  182. Castellanos FX, Lee PP, Sharp W, Jeffries NO, Greenstein DK, Clasen LS et al. Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. J Am Med Assoc 2002; 288: 1740–1748.

    Article  Google Scholar 

  183. The MTA Cooperative Group. A 14-month randomized clinical trial of treatment strategies for attention-deficit/hyperactivity disorder. The MTA Cooperative Group. Multimodal Treatment Study of Children with ADHD. Arch Gen Psychiatry 1999; 56: 1073–1086.

  184. Kuczenski R, Segal DS . Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: comparison with amphetamine. J Neurochem 1997; 68: 2032–2037.

    Article  CAS  PubMed  Google Scholar 

  185. Schiffer WK, Volkow ND, Fowler JS, Alexoff DL, Logan J, Dewey SL . Therapeutic doses of amphetamine or methylphenidate differentially increase synaptic and extracellular dopamine. Synapse 2006; 59: 243–251.

    Article  CAS  PubMed  Google Scholar 

  186. Strakowski SM, Sax KW, Rosenberg HL, DelBello MP, Adler CM . Human response to repeated low-dose D-amphetamine: evidence for behavioral enhancement and tolerance. Neuropsychopharmacology 2001; 25: 548–554.

    Article  CAS  PubMed  Google Scholar 

  187. Becker JB . Gender differences in dopaminergic function in striatum and nucleus accumbens. Pharmacol Biochem Behav 1999; 64: 803–812.

    Article  CAS  PubMed  Google Scholar 

  188. Robinson TE, Becker JB . Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res 1986; 396: 157–198.

    Article  CAS  PubMed  Google Scholar 

  189. Kuczenski R, Segal DS . Stimulant actions in rodents: implications for attention-deficit/hyperactivity disorder treatment and potential substance abuse. Biol Psychiatry 2005; 57: 1391–1396.

    Article  CAS  PubMed  Google Scholar 

  190. Angrist B, Gershon S . Dopamine and psychotic states: preliminary remarks. Adv Biochem Psychopharmacol 1974; 12: 211–219.

    CAS  PubMed  Google Scholar 

  191. Curran C, Byrappa N, McBride A . Stimulant psychosis: systematic review. Br J Psychiatry 2004; 185: 196–204.

    Article  PubMed  Google Scholar 

  192. Griffith J . A study of illicit amphetamine drug traffic in Oklahoma city. Am J Psychiatry 1966; 123: 560–569.

    Article  CAS  PubMed  Google Scholar 

  193. McKetin R, McLaren J, Lubman DI, Hides L . The prevalence of psychotic symptoms among methamphetamine users. Addiction 2006; 101: 1473–1478.

    Article  PubMed  Google Scholar 

  194. Hartel-Petri R, Rodler R, Schmeisser U, Steinmann J, Wolfersdorf M . [Increasing prevalence of amphetamine- and methamphetamine-induced psychosis]. Psychiatr Prax 2005; 32: 13–17.

    Article  PubMed  Google Scholar 

  195. Yui K, Ikemoto S, Ishiguro T, Goto K . Studies of amphetamine or methamphetamine psychosis in Japan: relation of methamphetamine psychosis to schizophrenia. Ann NY Acad Sci 2000; 914: 1–12.

    Article  CAS  PubMed  Google Scholar 

  196. Yui K, Ikemoto S, Goto K . Factors for susceptibility to episode recurrence in spontaneous recurrence of methamphetamine psychosis. Ann NY Acad Sci 2002; 965: 292–304.

    Article  CAS  PubMed  Google Scholar 

  197. Ujike H, Harano M, Inada T, Yamada M, Komiyama T, Sekine Y et al. Nine- or fewer repeat alleles in VNTR polymorphism of the dopamine transporter gene is a strong risk factor for prolonged methamphetamine psychosis. Pharmacogenomics J 2003; 3: 242–247.

    Article  CAS  PubMed  Google Scholar 

  198. Ujike H . [Japanese Genetics Initiative for Drug Abuse (JGIDA)]. Nihon Shinkei Seishin Yakurigaku Zasshi 2004; 24: 299–302.

    PubMed  Google Scholar 

  199. Downes MA, Whyte IM . Amphetamine-induced movement disorder. Emerg Med Australas 2005; 17: 277–280.

    Article  PubMed  Google Scholar 

  200. Anggard E, Jonsson LE, Hogmark AL, Gunne LM . Amphetamine metabolism in amphetamine psychosis. Clin Pharmacol Ther 1973; 14: 870–880.

    Article  CAS  PubMed  Google Scholar 

  201. Sanga M, Younis IR, Tirumalai PS, Bland TM, Banaszewska M, Konat GW et al. Epoxidation of the methamphetamine pyrolysis product, trans-phenylpropene, to trans-phenylpropylene oxide by CYP enzymes and stereoselective glutathione adduct formation. Toxicol Appl Pharmacol 2006; 211: 148–156.

    Article  CAS  PubMed  Google Scholar 

  202. Cherland E, Fitzpatrick R . Psychotic side effects of psychostimulants: a 5-year review. Can J Psychiatry 1999; 44: 811–813.

    Article  CAS  PubMed  Google Scholar 

  203. Masand P, Pickett P, Murray GB . Psychostimulants for secondary depression in medical illness. Psychosomatics 1991; 32: 203–208.

    Article  CAS  PubMed  Google Scholar 

  204. Murray JB . Psychophysiological aspects of amphetamine–methamphetamine abuse. J Psychol 1998; 132: 227–237.

    Article  CAS  PubMed  Google Scholar 

  205. Polchert SE, Morse RM . Pemoline abuse. J Am Med Assoc 1985; 254: 946–947.

    Article  CAS  Google Scholar 

  206. Surles LK, May HJ, Garry JP . Adderall-induced psychosis in an adolescent. J Am Board Fam Pract 2002; 15: 498–500.

    PubMed  Google Scholar 

  207. Ross RG . Psychotic and manic-like symptoms during stimulant treatment of attention deficit hyperactivity disorder. Am J Psychiatry 2006; 163: 1149–1152.

    Article  PubMed  Google Scholar 

  208. Auger RR, Goodman SH, Silber MH, Krahn LE, Pankratz VS, Slocumb NL . Risks of high-dose stimulants in the treatment of disorders of excessive somnolence: a case–control study. Sleep 2005; 28: 667–672.

    Article  PubMed  Google Scholar 

  209. Pawluk LK, Hurwitz TD, Schluter JL, Ullevig C, Mahowald MW . Psychiatric morbidity in narcoleptics on chronic high dose methylphenidate therapy. J Nerv Ment Dis 1995; 183: 45–48.

    Article  CAS  PubMed  Google Scholar 

  210. Tsuang MT, Lyons MJ, Eisen SA, Goldberg J, True W, Lin N et al. Genetic influences on DSM-III-R drug abuse and dependence: a study of 3372 twin pairs. Am J Med Genet 1996; 67: 473–477.

    Article  CAS  PubMed  Google Scholar 

  211. van den Bree MB, Johnson EO, Neale MC, Pickens RW . Genetic and environmental influences on drug use and abuse/dependence in male and female twins. Drug Alcohol Depend 1998; 52: 231–241.

    Article  CAS  PubMed  Google Scholar 

  212. Suzuki A, Nakamura K, Sekine Y, Minabe Y, Takei N, Suzuki K et al. An association study between catechol-O-methyl transferase gene polymorphism and methamphetamine psychotic disorder. Psychiatr Genet 2006; 16: 133–138.

    Article  PubMed  Google Scholar 

  213. Matsuzawa D, Hashimoto K, Miyatake R, Shirayama Y, Shimizu E, Maeda K et al. Identification of functional polymorphisms in the promoter region of the human PICK1 gene and their association with methamphetamine psychosis. Am J Psychiatry 2007; 164: 1105–1114.

    Article  PubMed  Google Scholar 

  214. Madras BK . Imaging the dopamine transporter: a window on dopamine neurons. In: Marwab J, Teitelbaum H (ed). Advances in Neurodegenerative Disorders, vol. 1 Prominent Press: Scottsdale, Arizona, 1998, pp 229–253.

    Google Scholar 

  215. Yatin SM, Miller GM, Norton C, Madras BK . Dopamine transporter-dependent induction of C-Fos in HEK cells. Synapse 2002; 45: 52–65.

    Article  CAS  PubMed  Google Scholar 

  216. Silverstone PH, Asghar SJ, O’Donnell T, Ulrich M, Hanstock CC . Lithium and valproate protect against dextro-amphetamine induced brain choline concentration changes in bipolar disorder patients. World J Biol Psychiatry 2004; 5: 38–44.

    Article  PubMed  Google Scholar 

  217. Wan FJ, Shiah IS, Lin HC, Huang SY, Tung CS . Nomifensine attenuates D-amphetamine-induced dopamine terminal neurotoxicity in the striatum of rats. Chin J Physiol 2000; 43: 69–74.

    CAS  PubMed  Google Scholar 

  218. Escubedo E, Chipana C, Perez-Sanchez M, Camarasa J, Pubill D . Methyllycaconitine prevents methamphetamine-induced effects in mouse striatum: involvement of alpha7 nicotinic receptors. J Pharmacol Exp Ther 2005; 315: 658–667.

    Article  CAS  PubMed  Google Scholar 

  219. Klongpanichapak S, Govitrapong P, Sharma SK, Ebadi M . Attenuation of cocaine and methamphetamine neurotoxicity by coenzyme Q10. Neurochem Res 2006; 31: 303–311.

    Article  CAS  PubMed  Google Scholar 

  220. Wu PH, Shen YC, Wang YH, Chi CW, Yen JC . Baicalein attenuates methamphetamine-induced loss of dopamine transporter in mouse striatum. Toxicology 2006; 226: 238–245.

    Article  CAS  PubMed  Google Scholar 

  221. Klongpanichapak S, Phansuwan-Pujito P, Ebadi M, Govitrapong P . Melatonin protects SK-N-SH neuroblastoma cells from amphetamine-induced neurotoxicity. J Pineal Res 2007; 43: 65–73.

    Article  CAS  PubMed  Google Scholar 

  222. Achat-Mendes C, Anderson KL, Itzhak Y . Impairment in consolidation of learned place preference following dopaminergic neurotoxicity in mice is ameliorated by N-acetylcysteine but not D1 and D2 dopamine receptor agonists. Neuropsychopharmacology 2007; 32: 531–541.

    Article  CAS  PubMed  Google Scholar 

  223. Iversen LL . Speed, Ecstasy, Ritalin: the Science of Amphetamines. Oxford University Press: New York, NY, 2006.

    Google Scholar 

  224. Rykhlevskaia E, Gratton G, Fabiani M . Combining structural and functional neuroimaging data for studying brain connectivity: a review. Psychophysiology 2008; 45: 173–187.

    Article  PubMed  Google Scholar 

  225. Apostolova LG, Thompson PM . Brain mapping as a tool to study neurodegeneration. Neurotherapeutics 2007; 4: 387–400.

    Article  PubMed  PubMed Central  Google Scholar 

  226. Hutton C, De Vita E, Ashburner J, Deichmann R, Turner R . Voxel-based cortical thickness measurements in MRI. Neuroimage 2008; 40: 1701–1710.

    Article  PubMed  Google Scholar 

  227. de Win MM, Reneman L, Jager G, Vlieger EJ, Olabarriaga SD, Lavini C et al. A prospective cohort study on sustained effects of low-dose ecstasy use on the brain in new ecstasy users. Neuropsychopharmacology 2007; 32: 458–470.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from National Institute on Drug Abuse Grants DA022539, DA020726 and DA024853 (EDL), the Addictive Disorders Research Foundation and the Bette G Lee Family Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E D London.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berman, S., Kuczenski, R., McCracken, J. et al. Potential adverse effects of amphetamine treatment on brain and behavior: a review. Mol Psychiatry 14, 123–142 (2009). https://doi.org/10.1038/mp.2008.90

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2008.90

Keywords

This article is cited by

Search

Quick links