Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem cell transplantation

Extended time-lapse in vivo imaging of tibia bone marrow to visualize dynamic hematopoietic stem cell engraftment

Abstract

Homing, engraftment and proliferation of hematopoietic stem/progenitor cell (HSC/HPCs) are crucial steps required for success of a bone marrow transplant. Observation of these critical events is limited by the opaque nature of bone. Here we demonstrate how individual HSCs engraft in long bones by thinning one side of the tibia for direct and unbiased observation. Intravital imaging enabled detailed visualization of single Sca-1+, c-Kit+, Lineage (SKL) cell migration to bone marrow niches and subsequent proliferation to reconstitute hematopoiesis. This longitudinal study allowed direct observation of dynamic HSC/HPC activities during engraftment in full color for up to 6 days in live recipients. Individual SKL cells, but not mature or committed progenitor cells, preferentially homed to a limited number of niches near highly vascularized endosteal regions, and clonally expanded. Engraftment of SKL cells in P-selectin and osteopontin knockout mice showed abnormal homing and expansion of SKL cells. CD150+, CD48 SKL populations initially engrafted in the central marrow region, utilizing only a subset of niches occupied by the parent SKL cells. Our study demonstrates that time-lapse imaging of tibia can be a valuable tool to understand the dynamic characteristics of functional HSC and niche components in various mouse models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Wilson A, Trumpp A . Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 2006; 6: 93–106.

    Article  CAS  Google Scholar 

  2. Osawa M, Hanada K, Hamada H, Nakauchi H . Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 1996; 273: 242–245.

    Article  CAS  Google Scholar 

  3. Grant MB, May WS, Caballero S, Brown GA, Guthrie SM, Mames RN et al. Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat Med 2002; 8: 607–612.

    Article  CAS  Google Scholar 

  4. Kiel MJ, Yilmaz OH, Iwashita T, Terhorst C, Morrison SJ . SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005; 121: 1109–1121.

    Article  CAS  Google Scholar 

  5. Wagers AJ, Sherwood RI, Christensen JL, Weissman IL . Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 2002; 297: 2256–2259.

    Article  CAS  Google Scholar 

  6. Weksberg DC, Chambers SM, Boles NC, Goodell MA . CD150- side population cells represent a functionally distinct population of long-term hematopoietic stem cells. Blood 2008; 111: 2444–2451.

    Article  CAS  Google Scholar 

  7. Purton LE, Scadden DT . The hematopoietic stem cell niche. In: StemBook 2008 Harvard Stem Cell Institute: Cambridge (MA).

    Google Scholar 

  8. Challen GA, Boles N, Lin KK, Goodell MA . Mouse hematopoietic stem cell identification and analysis. Cytometry A 2009; 75: 14–24.

    Article  Google Scholar 

  9. Kiel MJ, Morrison SJ . Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol 2008; 8: 290–301.

    Article  CAS  Google Scholar 

  10. Lo Celso C, Wu JW, Lin CP . In vivo imaging of hematopoietic stem cells and their microenvironment. J Biophotonics 2009; 2: 619–631.

    Article  Google Scholar 

  11. Ugarte F, Forsberg EC . Haematopoietic stem cell niches: new insights inspire new questions. EMBO J 2013; 32: 2535–2547.

    Article  CAS  Google Scholar 

  12. Morrison SJ, Scadden DT . The bone marrow niche for haematopoietic stem cells. Nature 2014; 505: 327–334.

    Article  CAS  Google Scholar 

  13. Kokkaliaris KD, Loeffler D, Schroeder T . Advances in tracking hematopoiesis at the single-cell level. Curr Opin Hematol 2012; 19: 243–249.

    Article  Google Scholar 

  14. Bengtsson NE, Kim S, Lin L, Walter GA, Scott EW . Ultra-high-field MRI real-time imaging of HSC engraftment of the bone marrow niche. Leukemia 2011; 25: 1223–1231.

    Article  CAS  Google Scholar 

  15. Kohler A, Schmithorst V, Filippi MD, Ryan MA, Daria D, Gunzer M et al. Altered cellular dynamics and endosteal location of aged early hematopoietic progenitor cells revealed by time-lapse intravital imaging in long bones. Blood 2009; 114: 290–298.

    Article  Google Scholar 

  16. Fujisaki J, Wu J, Carlson AL, Silberstein L, Putheti P, Larocca R et al. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature 2011; 474: 216–219.

    Article  CAS  Google Scholar 

  17. Haylock DN, Williams B, Johnston HM, Liu MC, Rutherford KE, Whitty GA et al. Hemopoietic stem cells with higher hemopoietic potential reside at the bone marrow endosteum. Stem Cells 2007; 25: 1062–1069.

    Article  CAS  Google Scholar 

  18. Greenbaum A, Hsu YM, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 2013; 495: 227–230.

    Article  CAS  Google Scholar 

  19. Xie Y, Yin T, Wiegraebe W, He XC, Miller D, Stark D et al. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 2009; 457: 97–101.

    Article  CAS  Google Scholar 

  20. Butler JM, Guthrie SM, Koc M, Afzal A, Caballero S, Brooks HL et al. SDF-1 is both necessary and sufficient to promote proliferative retinopathy. J Clin Invest 2005; 115: 86–93.

    Article  CAS  Google Scholar 

  21. Harris JR, Fisher R, Jorgensen M, Kaushal S, Scott EW . CD133 progenitor cells from the bone marrow contribute to retinal pigment epithelium repair. Stem Cells 2009; 27: 457–466.

    Article  Google Scholar 

  22. Arndt K, Grinenko T, Mende N, Reichert D, Portz M, Ripich T et al. CD133 is a modifier of hematopoietic progenitor frequencies but is dispensable for the maintenance of mouse hematopoietic stem cells. Proc Natl Acad Sci USA 2013; 110: 5582–5587.

    Article  CAS  Google Scholar 

  23. Dominici M, Rasini V, Bussolari R, Chen X, Hofmann TJ, Spano C et al. Restoration and reversible expansion of the osteoblastic hematopoietic stem cell niche after marrow radioablation. Blood 2009; 114: 2333–2343.

    Article  CAS  Google Scholar 

  24. Slayton WB, Li XM, Butler J, Guthrie SM, Jorgensen ML, Wingard JR et al. The role of the donor in the repair of the marrow vascular niche following hematopoietic stem cell transplant. Stem Cells 2007; 25: 2945–2955.

    Article  Google Scholar 

  25. Waskow C, Madan V, Bartels S, Costa C, Blasig R, Rodewald HR . Hematopoietic stem cell transplantation without irradiation. Nat Methods 2009; 6: 267–269.

    Article  CAS  Google Scholar 

  26. Nilsson SK, Dooner MS, Tiarks CY, Weier HU, Quesenberry PJ . Potential and distribution of transplanted hematopoietic stem cells in a nonablated mouse model. Blood 1997; 89: 4013–4020.

    CAS  PubMed  Google Scholar 

  27. Yin T, Li L . The stem cell niches in bone. J Clin Invest 2006; 116: 1195–1201.

    Article  CAS  Google Scholar 

  28. Nilsson SK, Simmons PJ, Bertoncello I . Hemopoietic stem cell engraftment. Exp Hematol 2006; 34: 123–129.

    Article  CAS  Google Scholar 

  29. Srour EF, Jetmore A, Wolber FM, Plett PA, Abonour R, Yoder MC et al. Homing, cell cycle kinetics and fate of transplanted hematopoietic stem cells. Leukemia 2001; 15: 1681–1684.

    Article  CAS  Google Scholar 

  30. Scadden DT . The stem-cell niche as an entity of action. Nature 2006; 441: 1075–1079.

    Article  CAS  Google Scholar 

  31. Krause DS, Scadden DT, Preffer FI . The hematopoietic stem cell niche–home for friend and foe? Cytometry B 2013; 84: 7–20.

    Article  Google Scholar 

  32. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003; 425: 836–841.

    Article  CAS  Google Scholar 

  33. Wu M, Kwon HY, Rattis F, Blum J, Zhao C, Ashkenazi R et al. Imaging hematopoietic precursor division in real time. Cell Stem Cell 2007; 1: 541–554.

    Article  CAS  Google Scholar 

  34. Sipkins DA, Wei X, Wu JW, Runnels JM, Cote D, Means TK et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 2005; 435: 969–973.

    Article  CAS  Google Scholar 

  35. Mazo IB, Gutierrez-Ramos JC, Frenette PS, Hynes RO, Wagner DD, von Andrian UH . Hematopoietic progenitor cell rolling in bone marrow microvessels: parallel contributions by endothelial selectins and vascular cell adhesion molecule 1. J Exp Med 1998; 188: 465–474.

    Article  CAS  Google Scholar 

  36. Nilsson SK, Johnston HM, Whitty GA, Williams B, Webb RJ, Denhardt DT et al. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 2005; 106: 1232–1239.

    Article  CAS  Google Scholar 

  37. Stier S, Ko Y, Forkert R, Lutz C, Neuhaus T, Grunewald E et al. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J Exp Med 2005; 201: 1781–1791.

    Article  CAS  Google Scholar 

  38. Morita Y, Ema H, Nakauchi H . Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. J Exp Med 2010; 207: 1173–1182.

    Article  CAS  Google Scholar 

  39. Ikuta K, Weissman IL . Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc Natl Acad Sci USA 1992; 89: 1502–1506.

    Article  CAS  Google Scholar 

  40. Li CL, Johnson GR . Murine hematopoietic stem and progenitor cells: I. Enrichment and biologic characterization. Blood 1995; 85: 1472–1479.

    CAS  PubMed  Google Scholar 

  41. Osawa M, Nakamura K, Nishi N, Takahasi N, Tokuomoto Y, Inoue H et al. In vivo self-renewal of c-Kit+ Sca-1+ Lin(low/-) hemopoietic stem cells. J Immunol 1996; 156: 3207–3214.

    CAS  PubMed  Google Scholar 

  42. Ema H, Morita Y, Yamazaki S, Matsubara A, Seita J, Tadokoro Y et al. Adult mouse hematopoietic stem cells: purification and single-cell assays. Nat Protoc 2006; 1: 2979–2987.

    Article  CAS  Google Scholar 

  43. Trumpp A, Essers M, Wilson A . Awakening dormant haematopoietic stem cells. Nat Rev Immunol 2010; 10: 201–209.

    Article  CAS  Google Scholar 

  44. Itkin T, Gur-Cohen S, Spencer JA, Schajnovitz A, Ramasamy SK, Kusumbe AP et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 2016; 532: 323–328.

    Article  CAS  Google Scholar 

  45. Acar M, Kocherlakota KS, Murphy MM, Peyer JG, Oguro H, Inra CN et al. Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 2015; 526: 126–130.

    Article  CAS  Google Scholar 

  46. Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 2013; 502: 637–643.

    Article  CAS  Google Scholar 

  47. Ellis SL, Grassinger J, Jones A, Borg J, Camenisch T, Haylock D et al. The relationship between bone, hemopoietic stem cells, and vasculature. Blood 2011; 118: 1516–1524.

    Article  CAS  Google Scholar 

  48. Nombela-Arrieta C, Pivarnik G, Winkel B, Canty KJ, Harley B, Mahoney JE et al. Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol 2013; 15: 533–543.

    Article  CAS  Google Scholar 

  49. Levesque JP, Helwani FM, Winkler IG . The endosteal 'osteoblastic' niche and its role in hematopoietic stem cell homing and mobilization. Leukemia 2010; 24: 1979–1992.

    Article  Google Scholar 

  50. Boulais PE, Frenette PS . Making sense of hematopoietic stem cell niches. Blood 2015; 125: 2621–2629.

    Article  CAS  Google Scholar 

  51. Wang L, Benedito R, Bixel MG, Zeuschner D, Stehling M, Savendahl L et al. Identification of a clonally expanding haematopoietic compartment in bone marrow. The EMBO journal 2013; 32: 219–230.

    Article  Google Scholar 

  52. Quesenberry PJ, Goldberg LR, Dooner MS . Concise reviews: a stem cell apostasy: a tale of four H words. Stem Cells 2015; 33: 15–20.

    Article  CAS  Google Scholar 

  53. Goldberg LR, Dooner MS, Johnson KW, Papa EF, Pereira MG, Del Tatto M et al. The murine long-term multi-lineage renewal marrow stem cell is a cycling cell. Leukemia 2014; 28: 813–822.

    Article  CAS  Google Scholar 

  54. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC . Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996; 183: 1797–1806.

    Article  CAS  Google Scholar 

  55. Kim S, Zingler M, Harrison JK, Scott EW, Cogle CR, Luo D et al. Angiotensin II regulation of proliferation, differentiation, and engraftment of hematopoietic stem cells. Hypertension 2016; 67: 574–584.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank MK Raizada, GP Marshall, SY Kim and N Benson for their discussion and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E W Scott.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Lin, L., Brown, G. et al. Extended time-lapse in vivo imaging of tibia bone marrow to visualize dynamic hematopoietic stem cell engraftment. Leukemia 31, 1582–1592 (2017). https://doi.org/10.1038/leu.2016.354

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.354

This article is cited by

Search

Quick links