Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

Lenalidomide inhibits osteoclastogenesis, survival factors and bone-remodeling markers in multiple myeloma

An Erratum to this article was published on 15 October 2008

Abstract

Osteolytic bone disease in multiple myeloma (MM) is caused by enhanced osteoclast (OCL) activation and inhibition of osteoblast function. Lenalidomide and bortezomib have shown promising response rates in relapsed and newly diagnosed MM, and bortezomib has recently been reported to inhibit OCLs. We here investigated the effect of lenalidomide on OCL formation and osteoclastogenesis in comparison with bortezomib. Both drugs decreased αVβ3-integrin, tartrate-resistant acid phosphatase-positive cells and bone resorption on dentin disks. In addition, both agents decreased receptor activator of nuclear factor-κB ligand (RANKL) secretion of bone marrow stromal cells (BMSCs) derived from MM patients. We identified PU.1 and pERK as major targets of lenalidomide, and nuclear factor of activated T cells of bortezomib, resulting in inhibition of osteoclastogenesis. Furthermore, downregulation of cathepsin K, essential for resorption of the bone collagen matrix, was observed. We demonstrated a significant decrease of growth and survival factors including macrophage inflammatory protein-α, B-cell activating factor and a proliferation-inducing ligand. Importantly, in serum from MM patients treated with lenalidomide, the essential bone-remodeling factor RANKL, as well as the RANKL/OPG ratio, were significantly reduced, whereas osteoprotegerin (OPG) was increased. We conclude that both agents specifically target key factors in osteoclastogenesis, and could directly affect the MM-OCL-BMSCs activation loop in osteolytic bone disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Hideshima T, Anderson KC . Molecular mechanisms of novel therapeutic approaches for multiple myeloma. Nat Rev Cancer 2002; 2: 927–937.

    Article  CAS  PubMed  Google Scholar 

  2. Richardson PG, Blood E, Mitsiades CS, Jagannath S, Zeldenrust SR, Alsina M et al. A randomized phase 2 study of lenalidomide therapy for patients with relapsed or relapsed and refractory multiple myeloma. Blood 2006; 108: 3458–3464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dimopoulos M, Spencer A, Attal M, Prince HM, Harousseau JL, Dmoszynska A et al. Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med 2007; 357: 2123–2132.

    Article  CAS  PubMed  Google Scholar 

  4. Weber DM, Chen C, Niesvizky R, Wang M, Belch A, Stadtmauer EA et al. Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N Engl J Med 2007; 357: 2133–2142.

    Article  CAS  PubMed  Google Scholar 

  5. Jagannath S, Barlogie B, Berenson J, Siegel D, Irwin D, Richardson PG et al. A phase 2 study of two doses of bortezomib in relapsed or refractory myeloma. Br J Haematol 2004; 127: 165–172.

    Article  CAS  PubMed  Google Scholar 

  6. Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 2005; 352: 2487–2498.

    Article  CAS  PubMed  Google Scholar 

  7. Callander NS, Roodman GD . Myeloma bone disease. Semin Hematol 2001; 38: 276–285.

    Article  CAS  PubMed  Google Scholar 

  8. Berenson JR, Lichtenstein A, Porter L, Dimopoulos MA, Bordoni R, George S et al., Myeloma Aredia Study Group. Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. N Engl J Med 1996; 334: 488–493.

    Article  CAS  PubMed  Google Scholar 

  9. Lee JW, Chung HY, Ehrlich LA, Jelinek DF, Callander NS, Roodman GD et al. IL-3 expression by myeloma cells increases both osteoclast formation and growth of myeloma cells. Blood 2004; 103: 2308–2315.

    Article  CAS  PubMed  Google Scholar 

  10. Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 2003; 349: 2483–2494.

    Article  CAS  PubMed  Google Scholar 

  11. Zangari M, Esseltine D, Lee CK, Barlogie B, Elice F, Burns MJ et al. Response to bortezomib is associated to osteoblastic activation in patients with multiple myeloma. Br J Haematol 2005; 131: 71–73.

    Article  CAS  PubMed  Google Scholar 

  12. Terpos E, Heath DJ, Rahemtulla A, Zervas K, Chantry A, Anagnostopoulos A et al. Bortezomib reduces serum dickkopf-1 and receptor activator of nuclear factor-kappaB ligand concentrations and normalises indices of bone remodelling in patients with relapsed multiple myeloma. Br J Haematol 2006; 135: 688–692.

    Article  CAS  PubMed  Google Scholar 

  13. von Metzler I, Krebbel H, Hecht M, Manz RA, Fleissner C, Mieth M et al. Bortezomib inhibits human osteoclastogenesis. Leukemia 2007; 21: 2025–2234.

    Article  CAS  PubMed  Google Scholar 

  14. Anderson G, Gries M, Kurihara N, Honjo T, Anderson J, Donnenberg V et al. Thalidomide derivative CC-4047 inhibits osteoclast formation by down-regulation of PU.1. Blood 2006; 107: 3098–3105.

    Article  CAS  PubMed  Google Scholar 

  15. Hideshima T, Chauhan D, Podar K, Schlossman RL, Richardson P, Anderson KC . Novel therapies targeting the myeloma cell and its bone marrow microenvironment. Semin Oncol 2001; 28: 607–612.

    Article  CAS  PubMed  Google Scholar 

  16. Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 2005; 352: 2487–2498.

    Article  CAS  PubMed  Google Scholar 

  17. Grigoriadis AE, Wang ZQ, Cecchini MG, Hofstetter W, Felix R, Fleisch HA et al. c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 1994; 266: 443–448.

    Article  CAS  PubMed  Google Scholar 

  18. Rieman DJ, McClung HA, Dodds RA, Hwang SM, Holmes MW, James IE et al. Biosynthesis and processing of cathepsin K in cultured human osteoclasts. Bone 2001; 28: 282–289.

    Article  CAS  PubMed  Google Scholar 

  19. Faccio R, Grano M, Colucci S, Villa A, Giannelli G, Quaranta V et al. Localization and possible role of two different alpha v beta 3 integrin conformations in resting and resorbing osteoclasts. J Cell Sci 2002; 115 (Part 14): 2919–2929.

    CAS  PubMed  Google Scholar 

  20. Lee SE, Woo KM, Kim SY, Kim HM, Kwack K, Lee ZH et al. The phosphatidylinositol 3-kinase, p38, and extracellular signal-regulated kinase pathways are involved in osteoclast differentiation. Bone 2002; 30: 71–77.

    Article  CAS  PubMed  Google Scholar 

  21. Tondravi MM, McKercher SR, Anderson K, Erdmann JM, Quiroz M, Maki R et al. Osteopetrosis in mice lacking haematopoietic transcription factor PU.1. Nature 1997; 386: 81–84.

    Article  CAS  PubMed  Google Scholar 

  22. Boyle WJ, Simonet WS, Lacey DL . Osteoclast differentiation and activation. Nature 2003; 423: 337–342.

    Article  CAS  PubMed  Google Scholar 

  23. Grigoriadis AE, Wang ZQ, Cecchini MG, Hofstetter W, Felix R, Fleisch HA et al. c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 1994; 266: 443–448.

    Article  CAS  PubMed  Google Scholar 

  24. Wang ZQ, Ovitt C, Grigoriadis AE, Mohle-Steinlein U, Ruther U, Wagner EF . Bone and haematopoietic defects in mice lacking c-fos. Nature 1992; 360: 741–745.

    Article  CAS  PubMed  Google Scholar 

  25. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 2002; 3: 889–901.

    Article  CAS  PubMed  Google Scholar 

  26. Oyajobi BO, Franchin G, Williams PJ, Pulkrabek D, Gupta A, Munoz S et al. Dual effects of macrophage inflammatory protein-1alpha on osteolysis and tumor burden in the murine 5TGM1 model of myeloma bone disease. Blood 2003; 102: 311–319.

    Article  CAS  PubMed  Google Scholar 

  27. Han JH, Choi SJ, Kurihara N, Koide M, Oba Y, Roodman GD . Macrophage inflammatory protein-1alpha is an osteoclastogenic factor in myeloma that is independent of receptor activator of nuclear factor kappaB ligand. Blood 2001; 97: 3349–3353.

    Article  CAS  PubMed  Google Scholar 

  28. Choi SJ, Cruz JC, Craig F, Chung H, Devlin RD, Roodman GD et al. Macrophage inflammatory protein 1-alpha is a potential osteoclast stimulatory factor in multiple myeloma. Blood 2000; 96: 671–675.

    CAS  PubMed  Google Scholar 

  29. Abe M, Hiura K, Wilde J, Moriyama K, Hashimoto T, Ozaki S et al. Role for macrophage inflammatory protein (MIP)-1alpha and MIP-1beta in the development of osteolytic lesions in multiple myeloma. Blood 2002; 100: 2195–2202.

    CAS  PubMed  Google Scholar 

  30. Lentzsch S, Gries M, Janz M, Bargou R, Dorken B, Mapara MY . Macrophage inflammatory protein 1-alpha (MIP-1 alpha) triggers migration and signaling cascades mediating survival and proliferation in multiple myeloma (MM) cells. Blood 2003; 101: 3568–3573.

    Article  CAS  PubMed  Google Scholar 

  31. Moore PA, Belvedere O, Orr A, Pieri K, La Fleur DW, Feng P et al. BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science 1999; 285: 260–263.

    Article  CAS  PubMed  Google Scholar 

  32. Hahne M, Kataoka T, Schroter M, Hofmann K, Irmler M, Bodmer JL et al. APRIL, a new ligand of the tumor necrosis factor family, stimulates tumor cell growth. J Exp Med 1998; 188: 1185–1190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moreaux J, Cremer FW, Reme T, Raab M, Mahtouk K, Kaukel P et al. The level of TACI gene expression in myeloma cells is associated with a signature of microenvironment dependence versus a plasmablastic signature. Blood 2005; 106: 1021–1030.

    Article  CAS  PubMed  Google Scholar 

  34. Tai YT, Li XF, Breitkreutz I, Song W, Neri P, Catley L et al. Role of B-cell-activating factor in adhesion and growth of human multiple myeloma cells in the bone marrow microenvironment. Cancer Res 2006; 66: 6675–6682.

    Article  CAS  PubMed  Google Scholar 

  35. Moreaux J, Legouffe E, Jourdan E, Quittet P, Reme T, Lugagne C et al. BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood 2004; 103: 3148–3157.

    Article  CAS  PubMed  Google Scholar 

  36. Moreaux J, Cremer FW, Reme T, Raab M, Mahtouk K, Kaukel P et al. The level of TACI gene expression in myeloma cells is associated with a signature of microenvironment dependence versus a plasmablastic signature. Blood 2005; 106: 1021–1030.

    Article  CAS  PubMed  Google Scholar 

  37. Abe M, Kido S, Hiasa M, Nakano A, Oda A, Amou H et al. BAFF and APRIL as osteoclast-derived survival factors for myeloma cells: a rationale for TACI-Fc treatment in patients with multiple myeloma. Leukemia 2006; 20: 1313–1315.

    Article  CAS  PubMed  Google Scholar 

  38. Yaccoby S, Pennisi A, Li X, Dillon SR, Zhan F, Barlogie B et al. Atacicept (TACI-Ig) inhibits growth of TACI(high) primary myeloma cells in SCID-hu mice and in coculture with osteoclasts. Leukemia 2008; 22: 406–413.

    Article  CAS  PubMed  Google Scholar 

  39. Sezer O, Heider U, Jakob C, Zavrski I, Eucker J, Possinger K et al. Immunocytochemistry reveals RANKL expression of myeloma cells. Blood 2002; 99: 4646–4647.

    Article  CAS  PubMed  Google Scholar 

  40. Farrugia AN, Atkins GJ, To LB, Pan B, Horvath N, Kostakis P et al. Receptor activator of nuclear factor-kappaB ligand expression by human myeloma cells mediates osteoclast formation in vitro and correlates with bone destruction in vivo. Cancer Res 2003; 63: 5438–5445.

    CAS  PubMed  Google Scholar 

  41. Sezer O, Heider U, Zavrski I, Kuhne CA, Hofbauer LC . RANK ligand and osteoprotegerin in myeloma bone disease. Blood 2003; 101: 2094–2098.

    Article  CAS  PubMed  Google Scholar 

  42. Vanderkerken K, De Leenheer E, Shipman C, Asosingh K, Willems A, Van Camp B et al. Recombinant osteoprotegerin decreases tumor burden and increases survival in a murine model of multiple myeloma. Cancer Res 2003; 63: 287–289.

    CAS  PubMed  Google Scholar 

  43. Terpos E, Szydlo R, Apperley JF, Hatjiharissi E, Politou M, Meletis J et al. Soluble receptor activator of nuclear factor kappaB ligand-osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index. Blood 2003; 102: 1064–1069.

    Article  CAS  PubMed  Google Scholar 

  44. Terpos E, Mihou D, Szydlo R, Tsimirika K, Karkantaris C, Politou M et al. The combination of intermediate doses of thalidomide with dexamethasone is an effective treatment for patients with refractory/relapsed multiple myeloma and normalizes abnormal bone remodeling, through the reduction of sRANKL/osteoprotegerin ratio. Leukemia 2005; 19: 1969–1976.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the patients, nursing staff as well as the clinical research coordinators of the Jerome Lipper Multiple Myeloma Center/Dana-Farber Cancer Institute, for their help in providing serum specimens for this study. This work was supported by the Multiple Myeloma Research Foundation, LeBow Fund to Cure Myeloma (KCA); National Foundation of Cancer Research and NIH grants CA50947, CA78373 and CA10070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K C Anderson.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breitkreutz, I., Raab, M., Vallet, S. et al. Lenalidomide inhibits osteoclastogenesis, survival factors and bone-remodeling markers in multiple myeloma. Leukemia 22, 1925–1932 (2008). https://doi.org/10.1038/leu.2008.174

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.174

Keywords

This article is cited by

Search

Quick links