Article
Suppression of islet homeostasis protein thwarts diabetes mellitus progression

https://doi.org/10.1038/labinvest.2017.15Get rights and content
Under an Elsevier user license
open archive

Abstract

During progression to type 1 diabetes, insulin-producing β-cells are lost through an autoimmune attack resulting in unrestrained glucagon expression and secretion, activation of glycogenolysis, and escalating hyperglycemia. We recently identified a protein, designated islet homeostasis protein (IHoP), which specifically co-localizes within glucagon-positive α-cells and is overexpressed in the islets of both post-onset non-obese diabetic (NOD) mice and type 1 diabetes patients. Here we report that in the αTC1.9 mouse α-cell line, IHoP was released in response to high-glucose challenge and was found to regulate secretion of glucagon. We also show that in NOD mice with diabetes, major histocompatibility complex class II was upregulated in islets. In addition hyperglycemia was modulated in NOD mice via suppression of IHoP utilizing small interfering RNA (IHoP-siRNA) constructs/approaches. Suppression of IHoP in the pre-diabetes setting maintained normoglycemia, glyconeolysis, and fostered β-cell restoration in NOD mice 35 weeks post treatment. Furthermore, we performed adoptive transfer experiments using splenocytes from IHoP-siRNA-treated NOD/ShiLtJ mice, which thwarted the development of hyperglycemia and the extent of insulitis seen in recipient mice. Last, IHoP can be detected in the serum of human type 1 diabetes patients and could potentially serve as an early novel biomarker for type 1 diabetes in patients.

Cited by (0)

Supplementary Information accompanies the paper on the Laboratory Investigation website

Islet homeostasis protein (IHoP) co-localizes within pancreatic a-cells and is over-expressed in the islets of post-onset non-obese diabetic (NOD) mice and Type-1 diabetic patients. Suppression of IHoP during pre-diabetes altered the immune response producing normoglycemia in NOD mice for 35 weeks. IHoP levels increase in diabetic serum, indicating possible application as a biomarker.

Supplementary information The online version of this article (doi:10.1038/labinvest.2017.15) contains supplementary material, which is available to authorized users.