Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Review Article

Progress and prospects: Foamy virus vectors enter a new age

Abstract

Foamy viruses, distantly related to the major subfamily of Retroviruses, Orthoretroviruses that include oncoviruses (for example, murine leukemia virus (MLV)) and lentiviruses (human immunodeficiency virus (HIV)), are endemic in mammalian species, but not in human populations. Humans infected by accidental or occupational exposure remain well. The virus is not transmitted to others, nor is it associated with any disease. These features added to its broad host range, efficient transduction of progenitor cells and an integration profile less likely to induce insertional mutagenesis, make these viruses attractive as vectors. Long-term reversal of disease phenotype in dogs with the genetic defect, leukocyte adhesion deficiency, by foamy virus vector therapy strengthens the case for their clinical exploitation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Murray SM, Picker LJ, Axthelm MK, Hudkins K, Alpers CE, Linial ML . Replication in a superficial epithelial cell niche explains the lack of pathogenicity of primate foamy virus infections. J Virol 2008; 82: 5981–5985.

    Article  CAS  Google Scholar 

  2. Liu W, Worobey M, Li Y, Keele BF, Bibollet-Ruche F, Guo Y et al. Molecular ecology and natural history of simian foamy virus infection in wild-living chimpanzees. PLoS Pathog 2008; 4: e1000097.

    Article  Google Scholar 

  3. Morozov VA, Leendertz FH, Junglen S, Boesch C, Pauli G, Ellerbrok H . Frequent foamy virus infection in free-living chimpanzees of the Taï National Park (Côte d’Ivoire). J Gen Virol 2009; 90: 500–506.

    Article  CAS  Google Scholar 

  4. Jones-Engel L, Steinkraus KA, Murray SM, Engel GA, Grant R, Aggimarangsee N et al. Sensitive assays for simian foamy viruses reveal a high prevalence of infection in commensal, free-ranging Asian monkeys. J Virol 2007; 81: 7330–7337.

    Article  CAS  Google Scholar 

  5. Engel GA, Pizarro M, Shaw E, Cortes J, Fuentes A, Barry P et al. Unique pattern of enzootic primate viruses in Gibraltar macaques. Emerg Infect Dis 2008; 14: 1112–1115.

    Article  Google Scholar 

  6. Leendertz FH, Zirkel F, Couacy-Hymann E, Ellerbrok H, Morozov VA, Pauli G et al. Interspecies transmission of simian foamy virus in a natural predator-prey system. J Virol 2008; 82: 7741–7744.

    Article  CAS  Google Scholar 

  7. Boneva RS, Switzer WM, Spira TJ, Bhullar VB, Shanmugam V, Cong ME et al. Clinical and virological characterization of persistent human infection with simian foamy viruses. AIDS Res Hum Retroviruses 2007; 23: 1330–1337.

    Article  Google Scholar 

  8. Jones-Engel L, May CC, Engel GA, Steinkraus KA, Schillaci MA, Fuentes A et al. Diverse contexts of zoonotic transmission of simian foamy viruses in Asia. Emerg Infect Dis 2008; 14: 1200–1208.

    Article  CAS  Google Scholar 

  9. Brooks JI, Merks HW, Fournier J, Boneva RS, Sandstrom PA . Characterization of blood-borne transmission of simian foamy virus. Transfusion 2007; 47: 162–170.

    Article  CAS  Google Scholar 

  10. Perkovic M, Schmidt S, Marino D, Russell RA, Stauch B, Hofmann H et al. Species-specific inhibition of APOBEC3C by the prototype foamy virus protein bet. J Biol Chem 2009; 284: 5819–5826.

    Article  CAS  Google Scholar 

  11. Yap MW, Lindemann D, Stanke N, Reh J, Westphal D, Hanenberg H et al. Restriction of foamy viruses by primate Trim5alpha. J Virol 2008; 82: 5429–5439.

    Article  CAS  Google Scholar 

  12. Lee EG, Linial ML . The C terminus of foamy retrovirus Gag contains determinants for encapsidation of Pol protein into virions. J Virol 2008; 82: 10803–10810.

    Article  CAS  Google Scholar 

  13. Rethwilm A . Foamy virus vectors: an awaited alternative to gammaretro- and lentiviral vectors. Curr Gene Ther 2007; 7: 261–271.

    Article  CAS  Google Scholar 

  14. Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 2008; 118: 3132–3142.

    Article  CAS  Google Scholar 

  15. Bauer Jr TR, Allen JM, Hai M, Tuschong LM, Khan IF, Olson EM et al. Successful treatment of canine leukocyte adhesion deficiency by foamy virus vectors. Nat Med 2008; 14: 93–97.

    Article  CAS  Google Scholar 

  16. Beard BC, Keyser KA, Trobridge GD, Peterson LJ, Miller DG, Jacobs M et al. Unique integration profiles in a canine model of long-term repopulating cells transduced with gammaretrovirus, lentivirus, or foamy virus. Hum Gene Ther 2007; 18: 423–434.

    Article  CAS  Google Scholar 

  17. Valkov E, Gupta SS, Hare S, Helander A, Roversi P, McClure M et al. Functional and structural characterization of the integrase from the prototype foamy virus. Nucleic Acids Res 2009; 37: 243–255.

    Article  CAS  Google Scholar 

  18. Kang SY, Ahn DG, Lee C, Lee YS, Shin CG . Functional nucleotides of U5 LTR determining substrate specificity of prototype foamy virus integrase. J Microbiol Biotechnol 2008; 18: 1044–1049.

    CAS  PubMed  Google Scholar 

  19. Delelis O, Carayon K, Guiot E, Leh H, Tauc P, Brochon JC et al. Insight into the integrase-DNA recognition mechanism. A specific DNA-binding mode revealed by an enzymatically labeled integrase. J Biol Chem 2008; 10: 27838–27849.

    Article  Google Scholar 

  20. Hendrie PC, Huo Y, Stolitenko RB, Russell DW . A rapid and quantitative assay for measuring neighboring gene activation by vector proviruses. Mol Ther 2008; 16: 534–540.

    Article  CAS  Google Scholar 

  21. Bokhoven M, Stephen SL, Knight S, Gevers EF, Robinson IC, Takeuchi Y et al. Insertional gene activation by lentiviral and gammaretroviral vectors. J Virol 2009; 83: 283–294.

    Article  CAS  Google Scholar 

  22. Zychlinski D, Schambach A, Modlich U, Maetzig T, Meyer J, Grassman E et al. Physiological Promoters Reduce the Genotoxic Risk of Integrating Gene Vectors. Mol Ther 2008; 4: 718–725.

    Article  Google Scholar 

  23. Bastone P, Romen F, Liu W, Wirtz R, Koch U, Josephson N et al. Construction and characterization of efficient, stable and safe replication-deficient foamy virus vectors. Gene Ther 2007; 7: 613–620.

    Article  Google Scholar 

  24. Kiem HP, Allen J, Trobridge G, Olson E, Keyser K, Peterson L et al. Foamy-virus-mediated gene transfer to canine repopulating cells. Blood 2007; 109: 65–70.

    Article  CAS  Google Scholar 

  25. Wiktorowicz T, Peters K, Armbruster N, Steinert AF, Rethwilm A . Generation of an improved foamy virus vector by dissection of cis-acting sequences. J Gen Virol 2009; 90: 481–487.

    Article  CAS  Google Scholar 

  26. Lehmann-Che J, Renault N, Giron ML, Roingeard P, Clave E, Tobaly-Tapiero J et al. Centrosomal latency of incoming foamy viruses in resting cells. PLoS Pathog 2007; 3: e74.

    Article  Google Scholar 

  27. Sun Y, Li Z, Li L, Li J, Liu X, Li W . Effective inhibition of hepatitis B virus replication by small interfering RNAs expressed from human foamy virus vectors. Int J Mol Med 2007; 19: 705–711.

    CAS  PubMed  Google Scholar 

  28. Taylor JA, Vojtech L, Bahner I, Kohn DB, Laer DV, Russell DW et al. Foamy virus vectors expressing anti-HIV transgenes efficiently block HIV-1 replication. Mol Ther 2008; 16: 46–51.

    Article  CAS  Google Scholar 

  29. Rothenaigner I, Kramer S, Meggendorfer M, Rethwilm A, Brack-Werner R . Transduction of human neural progenitor cells with foamy virus vectors for differentiation-dependent gene expression. Gene Ther 2009; 16: 349–358.

    Article  CAS  Google Scholar 

  30. Gharwan H, Hirata RK, Wang P, Richard RE, Wang L, Olson E et al. Transduction of human embryonic stem cells by foamy virus vectors. Mol Ther 2007; 15: 1827–1833.

    Article  CAS  Google Scholar 

  31. Cai S, Ernstberger A, Wang H, Bailey BJ, Hartwell JR, Sinn AL et al. In vivo selection of hematopoietic stem cells transduced at a low multiplicity-of-infection with a foamy viral MGMT(P140K) vector. Exp Hematol 2008; 36: 283–292.

    Article  CAS  Google Scholar 

  32. Caprariello AV, Miller RH, Selkirk SM . Foamy virus as a gene transfer vector to the central nervous system. Gene Ther 2009; 16: 448–452.

    Article  CAS  Google Scholar 

  33. Liu W, Liu Z, Liu L, Xiao Z, Cao X, Cao Z et al. A novel human foamy virus mediated gene transfer of GAD67 reduces neuropathic pain following spinal cord injury. Neurosci Lett 2008; 432: 13–18.

    Article  CAS  Google Scholar 

  34. Si Y, Pulliam AC, Linka Y, Ciccone S, Leurs C, Yuan J et al. Overnight transduction with foamy viral vectors restores the long-term repopulating activity of Fancc−/− stem cells. Blood 2008; 112: 4458–4465.

    Article  CAS  Google Scholar 

  35. Trobridge GD, Allen JM, Peterson L, Ironside CG, Russell D, Kiem HP . Foamy and Lentiviral Vectors Transduce Canine Long-term Repopulating Cells at Similar Efficiency. Hum Gene Ther 2009; 5: 519–523.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M O McClure.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erlwein, O., McClure, M. Progress and prospects: Foamy virus vectors enter a new age. Gene Ther 17, 1423–1429 (2010). https://doi.org/10.1038/gt.2010.95

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.95

Keywords

This article is cited by

Search

Quick links