Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The Mad1–Sin3B interaction involves a novel helical fold

Abstract

Sin3A or Sin3B are components of a corepressor complex that mediates repression by transcription factors such as the helix-loop-helix proteins Mad and Mxi. Members of the Mad/Mxi family of repressors play important roles in the transition between proliferation and differentiation by down-regulating the expression of genes that are activated by the proto-oncogene product Myc. Here, we report the solution structure of the second paired amphipathic helix (PAH) domain (PAH2) of Sin3B in complex with a peptide comprising the N-terminal region of Mad1. This complex exhibits a novel interaction fold for which we propose the name 'wedged helical bundle'. Four α-helices of PAH2 form a hydrophobic cleft that accommodates an amphipathic Mad1 α-helix. Our data further show that, upon binding Mad1, secondary structure elements of PAH2 are stabilized. The PAH2–Mad1 structure provides the basis for determining the principles of protein interaction and selectivity involving PAH domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sin3 architecture and Mad1 binding.
Figure 2: Solution structure of the PAH2–hMad1-SID complex.
Figure 3: Sequence conservation in PAH1 and PAH2 domains.
Figure 4: Structural differences between unbound PAH2 and PAH2 in complex with hMad1-SID.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Schreiber-Agus, N. & DePinho, R.A. Bioessays 20, 808–818 (1998).

    Article  CAS  Google Scholar 

  2. Foley, K.P. & Eisenman, R.N. Biochim. Biophys. Acta 1423, M37–M47 ( 1999).

    CAS  PubMed  Google Scholar 

  3. Xu L., Glass, C.K. & Rosenfeld, M.G. Curr. Opin. Genet. Dev. 9, 140–147 (1999).

    Article  CAS  Google Scholar 

  4. Heinzel, T. et al. Nature 387, 43–48 (1997).

    Article  CAS  Google Scholar 

  5. Alland, L. et al. Nature 387, 49–55 (1997).

    Article  CAS  Google Scholar 

  6. Hassig, C.A., Fleischer, T.C., Billin, A.N., Schreiber, S.L. & Ayer, D.E. Cell 89, 341–347 (1997).

    Article  CAS  Google Scholar 

  7. Laherty, C.D. et al. Cell 89, 349–356 (1997).

    Article  CAS  Google Scholar 

  8. Zhang, Y., Iratni, R., Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Cell 89, 357–364 (1997).

    Article  CAS  Google Scholar 

  9. Nagy, L. et al. Cell 89, 373–380 (1997).

    Article  CAS  Google Scholar 

  10. Ayer D.E., Lawrence, Q.A. & Eisenman, R.N. Cell 80, 767– 776 (1995).

    Article  CAS  Google Scholar 

  11. Schreiber-Agus, N. et al. Cell 80, 777–786 (1995).

    Article  CAS  Google Scholar 

  12. Eilers, A.L., Billin, A.N., Liu, J. & Ayer, D.E. J. Biol. Chem. 274, 32750–32756 ( 1999).

    Article  CAS  Google Scholar 

  13. Laherty, C.D. et al. Mol. Cell 2, 33–42 (1998).

    Article  CAS  Google Scholar 

  14. Sheinerman, F.B., Norel, R. & Honig, B. Curr. Opin. Struct. Biol. 10, 153–159 (2000).

    Article  CAS  Google Scholar 

  15. Wishart, D.S. & Sykes, B.D. J. Biomol. NMR 4, 171–180 (1994).

    Article  CAS  Google Scholar 

  16. Dignam, J.D., Lebovitz, R.M. & Roeder, R.G. Nucleic Acids Res. 11, 1475 –1489 (1983)

    Article  CAS  Google Scholar 

  17. Delaglio, F. et al. J. Biomol. NMR 6, 277– 293 (1995).

    Article  CAS  Google Scholar 

  18. Brunger A.T. et al. Acta Crystallogr. D 54, 905– 921 (1998).

    Article  CAS  Google Scholar 

  19. Nilges, M., Macias, M.J., O'Donoghue, S.I. & Oschkinat, H. J. Mol. Biol. 269, 408–422 (1997).

    Article  CAS  Google Scholar 

  20. Koradi, R., Billeter, M. & Wüthrich, K. J. Mol. Graph. 14, 51– 55 (1996).

    Article  CAS  Google Scholar 

  21. Vriend, G. J. Mol. Graph. 52, 29–36 (1990).

    Google Scholar 

  22. Laskowski, R.A., Rullmann, J.A., MacArthur, M.W., Kaptein, R. & Thornton, J.M. J. Biomol. NMR 8, 477–486 ( 1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Aelen for technical assistance and purification of the labeled proteins. We wish to thank the members of our Departments and J. Betz for suggestions and critical reading of the manuscript. We thank B. Eisenman for his generous gift of the mSin3 cDNAs, D. Reinberg for Sap30 antibody, and A. Gronenborn for the pGev2 construct. The research of C. Spronk and M. Vermeulen is financially supported by the Netherlands Organization for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geerten W. Vuister.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spronk, C., Tessari, M., Kaan, A. et al. The Mad1–Sin3B interaction involves a novel helical fold. Nat Struct Mol Biol 7, 1100–1104 (2000). https://doi.org/10.1038/81944

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/81944

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing