Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Learning and selective attention

Abstract

Selective attention involves the differential processing of different stimuli, and has widespread psychological and neural consequences. Although computational modeling should offer a powerful way of linking observable phenomena at different levels, most work has focused on the relatively narrow issue of constraints on processing resources. By contrast, we consider statistical and informational aspects of selective attention, divorced from resource constraints, which are evident in animal conditioning experiments involving uncertain predictions and unreliable stimuli. Neuromodulatory systems and limbic structures are known to underlie attentional effects in such tasks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Uncertainty and unreliability.
Figure 2: Prediction with the Kalman filter up to time tF.
Figure 3: Architecture for prediction.
Figure 4: Competitive combination of predictions.

Similar content being viewed by others

References

  1. Broadbent, D. Perception and Communication (Pergamon, Elmsford, New York, 1958).

    Book  Google Scholar 

  2. Kahneman, D. Attention and Effort (Prentice-Hall, Englewood Cliffs, New Jersey, 1973).

    Google Scholar 

  3. Bundesen, C. in Converging Operations in the Study of Visual Selective Attention (eds. Kramer, A. F., Coles, M. G. H. & Logan, G. D.) 1– 44 (Am. Psychol. Assoc., Washington, DC, 1996).

    Book  Google Scholar 

  4. Allport, A. in Attention and Performance vol. 14 (eds. Meyer, D. E. & Kornblum, S.) 183–218 (MIT Press, Cambridge, Massachusetts, 1993).

    Google Scholar 

  5. Dayan, P. & Zemel, R. S. Statistical models and sensory attention. Intl. Conf. Artificial Neural Networks ( 1999).

  6. Robbins, T. W. in The Attentive Brain (ed. Parasuraman, R.) 189– 220 (MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  7. Dickinson, A. Contemporary Animal Learning Theory (Cambridge Univ. Press, Cambridge, 1980).

    Google Scholar 

  8. Mackintosh, N. J. Conditioning and Associative Learning (Oxford Univ. Press, Oxford, 1983).

    Google Scholar 

  9. Grossberg, S. Processing of expected and unexpected events during conditioning and attention: A psychophysiological theory. Psychol. Rev. 89, 529–572 (1982).

    Article  CAS  Google Scholar 

  10. Mackintosh, N. J. A theory of attention: Variations in the associability of stimuli with reinforcement . Psychol. Rev. 82, 276– 298 (1975).

    Article  Google Scholar 

  11. Pearce, J. M. & Hall, G. A model for Pavlovian learning: Variation in the effectiveness of conditioned but not unconditioned stimuli. Psychol. Rev. 87, 532–552 (1980).

    Article  CAS  Google Scholar 

  12. Kruschke, J. K. Relating Mackintosh's (1975) theory to connectionist models and human categorization. Talk presented at the Eighth Australasian Mathematical Psychology Conference (Perth, Australia, 1997).

  13. Dayan, P. & Long, T. in Advances in Neural Information Processing Systems vol. 10 (eds. Jordan, M. I., Kearns, M. A. & Solla, S. A.) 117–123 (MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  14. Kakade, S. & Dayan, P. in Advances in Neural Information Processing Systems vol. 12 (eds. Solla, S. A., Leen, T. K. & Muller, K.-R.) 24–30 (MIT Press, Cambridge, Massachusetts, 2000).

    Google Scholar 

  15. Everitt, B. J. & Robbins, T. W. Central cholinergic systems and cognition. Annu. Rev. Psychol. 48, 649–684 (1997).

    Article  CAS  Google Scholar 

  16. Holland, P. C. Brain mechanisms for changes in processing of conditioned stimuli in Pavlovian conditioning: Implications for behavior theory. Anim. Learn. Behav. 25, 373–399 ( 1997).

    Article  Google Scholar 

  17. Holland, P. C. & Gallagher, M. Amygdala circuitry in attentional and representational processes. Trends Cogn. Sci. 3, 65–73 (1999 ).

    Article  CAS  Google Scholar 

  18. Sutton, R. in Proceedings of the 7th Yale Workshop on Adaptive and Learning Systems 161–166 (Yale University, New Haven, Connecticut, 1992).

    Google Scholar 

  19. Anderson, B. D. O. & Moore, J. B. Optimal Filtering (Prentice-Hall, Englewood Cliffs, New Jersey, 1979 ).

  20. Pearce, J. M., Wilson, P. N. & Kaye, H. The influence of predictive accuracy on serial conditioning in the rat. Q. J. Exp. Psychol. Comp. Physiol. Psychol. 40, 181–198 (1988).

    Google Scholar 

  21. Swan, J. A. & Pearce, J. M. The influence of predictive accuracy on serial autoshaping: Evidence of orienting responses. J. Exp. Psychol. Anim. Behav. Processes 13, 407– 417 (1987).

    Article  Google Scholar 

  22. Swan, J. A. & Pearce, J. M. The orienting response as an index of stimulus associability in rats. J. Exp. Psychol. Anim. Behav. Processes 14, 292–301 ( 1988).

    Article  CAS  Google Scholar 

  23. Wilson, P. N., Boumphrey, P. & Pearce, J. M. Restoration of the orienting response to a light by a change in its predictive accuracy. Q. J. Exp. Psychol. 44B, 17–36 (1992).

    Google Scholar 

  24. Miller, R. R. & Matzel, L. D. in Contemporary Learning Theories: Pavlovian Conditioning and the Status of Traditional Learning Theory (eds., Klein, S. B. & Mowrer, R. R.) 61–84 (Erlbaum, Hillsdale, New Jersey, 1989).

    Google Scholar 

  25. Gallistel, C. R. & Gibbon, J. Time, rate, and conditioning. Psychol. Rev. 107, 289– 344 (2000).

    Article  CAS  Google Scholar 

  26. Neal, R. M. Bayesian Learning for Neural Networks (Springer, New York, 1996).

    Book  Google Scholar 

  27. Moran J. & Desimone R. Selective attention gates visual processing in the extrastriate cortex. Science 229, 782–784 (1985).

    Article  CAS  Google Scholar 

  28. Lu, Z. L. & Dosher, B. A. External noise distinguishes attention mechanisms. Vision Res. 38, 1183– 1198 (1998).

    Article  CAS  Google Scholar 

  29. McAdams, C. J. & Maunsell, J. H. R. Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J. Neurosci. 19, 431– 441 (1999).

    Article  CAS  Google Scholar 

  30. Treue, S. & Martinez Trujillo, J. C. Feature-based attention influences motion processing gain in macaque visual cortex. Nature 399, 575–579 ( 1999).

    Article  CAS  Google Scholar 

  31. Cohen, J. D. & Servan-Schreiber, D. A theory of dopamine function and its role in cognitive deficits in schizophrenia. Schizophrenia Bull. 19, 85–104 ( 1993).

    Article  CAS  Google Scholar 

  32. Han, J.-S., Holland, P. C. & Gallagher, M. Disconnection of the amygdala central nucleus and substantia innominata/nucleus basalis disrupts increments in conditioned stimulus processing in rats. Behav. Neurosci. 113, 143– 151 (1999).

    Article  CAS  Google Scholar 

  33. Corwin, J. V. & Reep, R. L. Rodent posterior parietal cortex as a component of a cortical network mediating directed spatial attention . Psychobiology 26, 87– 102 (1999).

    Google Scholar 

  34. Colby, C. L. & Goldberg, M. E. Space and attention in parietal cortex. Annu. Rev. Neurosci. 22, 319– 349 (1999).

    Article  CAS  Google Scholar 

  35. Mesulam, M. M. Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. Phil. Trans. R. Soc. Lond. B Biol. Sci. 354 , 1325–1346 (1999).

    Article  CAS  Google Scholar 

  36. Lubow, R. E. Latent Inhibition and Conditioned Attention Theory (Cambridge Univ. Press, New York, 1989).

    Book  Google Scholar 

  37. Solomon, P. R. & Moore, J. W. Latent inhibition and stimulus generalization of the classically conditioned nictitating membrane response in rabbits (Oryctolagus cuniculus) following hippocampal ablation . J. Comp. Physiol. Psychol. 89, 1192– 1203 (1975).

    Article  CAS  Google Scholar 

  38. Baxter, M. G., Holland, P. C. & Gallagher, M. Disruption of decrements in conditioned stimulus processing by selective removal of hippocampal cholinergic input. J. Neurosci. 17, 5230–5236 ( 1997).

    Article  CAS  Google Scholar 

  39. Weiner, I. Neural substrates of latent inhibition: The switching model. Psychol. Bull. 108, 442–461 ( 1990).

    Article  CAS  Google Scholar 

  40. Eichenbaum, H. The hippocampus: The shock of the new. Curr. Biol. 9, R482–R484 (1999).

    Article  CAS  Google Scholar 

  41. Houk, J. C., Davis, J. L. & Beiser, D. G. (eds.) Models of Information Processing in the Basal Ganglia (MIT Press, Cambridge, Massachusetts, 1995).

    Google Scholar 

  42. Wickens, J. & Kötter, R. in Models of Information Processing in the Basal Ganglia (eds., Houk, J. C., Davis, J. L. & Beiser, D. G.) 187–214 (MIT Press, Cambridge, Massachusetts, 1995).

    Google Scholar 

  43. Kropotov J. D. & Etlinger S. C. Selection of actions in the basal ganglia-thalamocortical circuits: review and model. Int. J. Psychophysiol. 31, 197–217 (1999).

    Article  CAS  Google Scholar 

  44. Doya, K. What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Networks 12, 961– 974 (1999).

    Article  CAS  Google Scholar 

  45. Hatfield, T., Han, J.-S., Conley, M., Gallagher, M. & Holland, P. C. Neurotoxic lesions of basolateral, but not central, amygdala interfere with Pavlovian second-order conditioning and reinforcer devaluation effects. J. Neurosci. 16, 5256 –5265 (1996).

    Article  CAS  Google Scholar 

  46. Schoenbaum, G., Chiba, A. A. & Gallagher, M. Neural encoding in orbitofrontal cortex and basolateral amygdala during olfactory discrimination learning. J. Neurosci. 19, 1876–1884 ( 1999).

    Article  CAS  Google Scholar 

  47. Schultz, W., Tremblay, L. & Hollerman, J. R. Reward processing in primate orbitofrontal cortex and basal ganglia. Cereb. Cortex 10, 272 –283 (2000).

    Article  CAS  Google Scholar 

  48. Ballard, D. H. Animate vision. Artificial Intelligence 48, 57–86 (1991).

    Article  Google Scholar 

  49. Schultz, W. & Dickinson, A. Neuronal coding of prediction errors. Annu. Rev. Neurosci. 23, 473– 500 (2000).

    Article  CAS  Google Scholar 

  50. Rescorla, R. A. & Wagner, A. R. in Classical Conditioning II: Current Research and Theory (eds., Black, A. H. & Prokasy, W. F.), 64–69 (Appleton-Century-Crofts, New York, 1972).

    Google Scholar 

  51. Sutton, R. S. Learning to predict by the methods of temporal difference. Machine Learning 3, 9–44 ( 1988).

    Google Scholar 

  52. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 ( 1997).

    Article  CAS  Google Scholar 

  53. Bordley, R. F. The combination of forecasts: a Bayesian approach. J. Operational Res. Soc. 33, 171–174 ( 1982).

    Article  Google Scholar 

  54. Lindley, D. V. in Bayesian Statistics 2 (eds., Bernado, J. M., DeGroot, M. M., Lindley, D. V. & Smith, A. F. M.) 375–390 (North Holland, Amsterdam, 1985).

    Google Scholar 

  55. Jacobs, R. A., Jordan, M. I. & Barto, A. G. Task decomposition through competition in a modular connectionist architecture: the what and where vision tasks. Cogn. Sci. 15, 219–250 ( 1991).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Nathaniel Daw, Anthony Dickinson, Alex Kacelnik, Theresa Long, Terry Sejnowski, and Rich Sutton for discussions covering many of these issues, and particularly to Nathaniel Daw for comments on an earlier version of this paper. The authors' work is funded by the Gatsby Charitable Foundation (P.D. and S.K.), the National Science Foundation (S.K.) and NIDA (P.R.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Dayan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dayan, P., Kakade, S. & Montague, P. Learning and selective attention. Nat Neurosci 3 (Suppl 11), 1218–1223 (2000). https://doi.org/10.1038/81504

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/81504

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing