Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of Staphylococcal LukF delineates conformational changes accompanying formation of a transmembrane channel

Abstract

Staphylococcal LukF, LukS, HγII, and α–hemolysin are self–assembling, channel–forming proteins related in sequence and function. In the α–hemolysin heptamer, the channel–forming β–strands and the amino latch make long excursions from the protomer core. Here we report the crystal structure of the water soluble form of LukF. In the LukF structure the channel–forming region folds into an amphipathic, three–strand β–sheet and the amino latch forms a β–strand extending a central β–sheet. The LukF structure illustrates how a channel–forming toxin masks protein–protein and protein–membrane interfaces prior to cell binding and assembly, and together with the α–hemolysin heptamer structure, they define the end points on the pathway of toxin assembly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LukF structure.
Figure 2: a, Ribbon representation of the LukF monomer numbered and colored according to the homologous strands and helices from the αHL protomer (ref. 10, Fig 3a).
Figure 3: Superpositions of LukF and a single protomer taken from the αHL heptamer structure.
Figure 4: Mechanism of assembly for αHL using the structure of LukF as a model for the water soluble and membrane–bound monomers, as well as for the pre–pore subunits.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Tomita, T. & Kamio, Y. Biosci. Biotech. Biochem. 61, 565–572 (1997).

    Article  CAS  Google Scholar 

  2. Gouaux, E. J. Struct. Biol. 121, 110–122 (1998).

    Article  CAS  Google Scholar 

  3. Prévost, G. et al. J. Med. Microbiol. 42, 237– 245 (1995).

    Article  Google Scholar 

  4. Prévost, G. et al. Infect. Immun. 63, 4121– 4129 (1995).

    PubMed  PubMed Central  Google Scholar 

  5. Staali, L., Monteil, H. & Colin, D.A. J. Memb. Biol. 162, 209– 216 (1998).

    Article  CAS  Google Scholar 

  6. Finck–Barbançon, V., Duportail, G., Meunier, O. & Colin, D.A. Biochim. Biophys. Acta 1182, 275–282 (1993).

    Article  Google Scholar 

  7. Sugawara, N., Tomita, T. & Kamio, Y. FEBS Lett. 410, 333– 337 (1997).

    Article  CAS  Google Scholar 

  8. Cooney, J., Kienle, Z., Foster, T.J. & O'Toole, P.W. Infect. Immun. 61, 768–771 ( 1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gouaux, E., Hobaugh, M.R. & Song, L. Prot. Sci. 6, 2631– 2635 (1997).

    Article  CAS  Google Scholar 

  10. Song, L. et al. Science 274, 1859–1866 (1996).

    Article  CAS  Google Scholar 

  11. Bhakdi, S. et al. Arch. Microbiol. 165, 73– 79 (1996).

    Article  CAS  Google Scholar 

  12. Walker, B., Krishnasastry, M., Zorn, L. & Bayley, H. J. Biol. Chem. 267, 21782–21786 (1992).

    CAS  PubMed  Google Scholar 

  13. Valeva, A., Palmer, M. & Bhakdi, S. Biochemistry 36, 13298– 13304 (1997).

    Article  CAS  Google Scholar 

  14. Hendrickson, W.A., Horton, J.R. & LeMaster, D.M. EMBO J. 9, 1665– 1672 (1990).

    Article  CAS  Google Scholar 

  15. Hendrickson, W.A. Science 254, 51–58 ( 1991).

    Article  CAS  Google Scholar 

  16. Valeva, A. et al. EMBO J. 15, 1857–1864 (1996).

    Article  CAS  Google Scholar 

  17. Walker, B. & Bayley, H. J. Biol. Chem. 270, 23065–23071 (1995).

    Article  CAS  Google Scholar 

  18. Kleywegt, G.J. & Jones, T.A. Meth. Enz. 277, 525–545 (1997).

    Article  CAS  Google Scholar 

  19. Meunier, O., et al. Biochim. Biophys. Acta 1326, 275– 286 (1997).

    Article  CAS  Google Scholar 

  20. Menzies, B.E. & Kernodle, D.S. Infect. Immun. 62 , 1843–1847 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Krishnasastry, M., Walker, B., Braha, O. & Bayley, H. FEBS Lett. 356, 66–71 (1994).

    Article  CAS  Google Scholar 

  22. Walker, B., Braha, O., Cheley, S. & Bayley, H. Chem. & Biol. 2, 99–105 ( 1995).

    Article  CAS  Google Scholar 

  23. Jursch, R. et al. Infect. Immun. 62, 2249– 2256 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Cheley, S. et al. Protein Engineer. 10, 1433– 1443 (1997).

    Article  CAS  Google Scholar 

  25. Nariya, H., et al. Biosci. Biotech. Biochem. 57, 2198– 2199 (1993).

    Article  CAS  Google Scholar 

  26. Leahy, D.J., Erickson, H.P., Aukhil, I., Joshi, P. & Hendrickson, W.A. Proteins 19, 48–54 (1994).

    Article  CAS  Google Scholar 

  27. Szebenyi, D.M.E., Arvai, A., Ealick, S., LaIuppa, J.M. & Nielsen, C. J. Synchrotron Rad. 4, 128– 135 (1997).

    Article  CAS  Google Scholar 

  28. Otwinowski, Z. & Minor, W. Meth. Enz. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  29. Terwilliger, T.C. & Berendzen, J. Acta Crystallogr. D53, 571–579 ( 1997).

    CAS  Google Scholar 

  30. Terwilliger, T.C. & Eisenberg, D. Acta Crystallogr. A39, 813–817 ( 1983).

    Article  CAS  Google Scholar 

  31. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760– 763 (1994).

  32. Read, R.J. Meth. Enz. 277, 110–128 (1997).

    Article  CAS  Google Scholar 

  33. Brünger, A.T. X–PLOR. Version 3.1. A system for X–ray crystallography and NMR (Yale University Press, New Haven, Connecticut; 1992 ).

    Google Scholar 

  34. Navaza, J. AMoRe: Acta Crystallgr. A50, 157–163 (1994).

    CAS  Google Scholar 

  35. Sim, G.A. Acta Crystallogr. 13, 511–512 (1960).

    Article  Google Scholar 

  36. Rice, L.M. & Brünger, A.T. Proteins Struct. Funct. Genet. 19, 277–290 ( 1994).

    Article  CAS  Google Scholar 

  37. Hauser, H., Pascher, I. & Sundell, S. J. Mol. Biol. 137, 249– 264 (1980).

    Article  CAS  Google Scholar 

  38. Biosym/MSI Insight Program Manual. (San Diego, California; 1995).

  39. Jones, T.A. & Kjeldgaard, M. Meth. Enz. 277, 173–208 (1997).

    Article  CAS  Google Scholar 

  40. Rahman, A., Nariya, H., Izaki, K., Kato, I. & Kamio, Y. Biochem. Biophys. Res. Comm. 184, 640– 646 (1992).

    Article  CAS  Google Scholar 

  41. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  42. Merritt, E.A. & Murphy, M.E.P. Acta Crystallogr. D 50, 869–873 (1994).

    Article  CAS  Google Scholar 

  43. Nicholls, A., Sharp, K.A. & Honig, B. Proteins Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The assistance of G.–Q. Chen, Y. Sun and N. Armstrong in synchrotron data collection and the help from S. Galdiero in data collection and processing are greatly appreciated. Superb support of the X–ray laboratory at Columbia by J. Lidestri is acknowledged as is general assistance from members of the Hendrickson group. Suggestions from L. Shapiro and D. Leahy on the growth of B834 E. coli and advice from T. Terwilliger on using Solve are also acknowledged. The MAD data collection component of this research was conducted at the Cornell High Energy Synchrotron Source (CHESS), which is supported by the National Science Foundation under award DMR–9311772, using the Macromolecular Diffraction at CHESS (MacCHESS) facility, which is supported by an award from the NIH. The diffraction data from the LukF–DiC3PC crystals was measured at 14–BM–D (BioCARS) at the Advanced Photon Source and we thank the beamline staff for their assistance. This work was also supported by the NIH (E.G.) and a Grant–In–Aid for Scientific Research from the Ministry of Education, Science Sport and Culture of Japan to YK. E.G. is a NSF Young Investigator and the recipient of an Alfred P. Sloan Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Gouaux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olson, R., Nariya, H., Yokota, K. et al. Crystal structure of Staphylococcal LukF delineates conformational changes accompanying formation of a transmembrane channel. Nat Struct Mol Biol 6, 134–140 (1999). https://doi.org/10.1038/5821

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/5821

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing