Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Snapin: a SNARE–associated protein implicated in synaptic transmission

Abstract

Synaptic vesicle docking and fusion are mediated by the assembly of a stable SNARE core complex of proteins, which include the synaptic vesicle membrane protein VAMP/synaptobrevin and the plasmalemmal proteins syntaxin and SNAP–25. We have now identified another SNAP–25–binding protein, called Snapin. Snapin was enriched in neurons and exclusively located on synaptic vesicle membranes. It associated with the SNARE complex through direct interaction with SNAP–25. Binding of recombinant Snapin–CT to SNAP–25 blocked the association of the SNARE complex with synaptotagmin. Introduction of Snapin–CT and peptides containing the SNAP–25 binding sequence into presynaptic superior cervical ganglion neurons in culture reversibly inhibited synaptic transmission. These results suggest that Snapin is an important component of the neurotransmitter release process through its modulation of the sequential interactions between the SNAREs and synaptotagmin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular cloning of Snapin.
Figure 2: The tissue and subcellular distribution of Snapin.
Figure 3: Invitro interaction of Snapin with SNAP–25.
Figure 4: Association of Snapin with the SNARE complex in vivo.
Figure 5: Effects of Snapin–CT on synaptic transmission of SCGNs in culture.
Figure 6: Inhibition of binding to SNAP–25 and neurotransmitter release by the Snapin peptides.

Similar content being viewed by others

References

  1. Rothman, J. E. Mechanisms of intracellular protein transport. Nature 372, 55–63 (1994).

    Article  CAS  Google Scholar 

  2. Bajjalieh, S. M. & Scheller, R. H. The biochemistry of neurotransmitter secretion. J. Biol. Chem. 270, 1971–1974 (1995).

    Article  CAS  Google Scholar 

  3. Südhof, T. C. The synaptic vesicle cycle: a cascade of protein–protein interactions. Nature 375, 645–653 (1995).

    Article  Google Scholar 

  4. Trimble, W. S., Cowan, D. M. & Scheller, R. H. VAMP–1: a synaptic vesicle–associated integral membrane protein. Proc. Natl. Acad. Sci. USA 85, 4538–4542 (1988).

    Article  CAS  Google Scholar 

  5. Bennett, M. K., Calakos, N. & Scheller, R. H. Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257, 255–259 (1992).

    Article  CAS  Google Scholar 

  6. Yoshida, A. et al. HPC–1 is associated with synaptotagmin and ω–conotoxin receptor. J. Biol. Chem. 267, 24925– 24928 (1992).

    CAS  PubMed  Google Scholar 

  7. Oyler, G. A. et al The identification of a novel synaptosomal–associated protein, SNAP–25, differentially expressed by neuronal subpopulations. J. Cell. Biol. 109, 3039– 3052 (1989).

    Article  CAS  Google Scholar 

  8. Söllner, T. et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324 (1993).

    Article  Google Scholar 

  9. Calakos, N., Bennett, M. K., Peterson, K. & Scheller, R. H. Protein–protein interactions contributing to the specificity of intracellular vesicular trafficking. Science 263, 1146 –1149 (1994).

    Article  CAS  Google Scholar 

  10. Hayashi, T. et al Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J. 13, 5051 –5061 (1994).

    Article  CAS  Google Scholar 

  11. Fields, F. & Song, O. A novel genetic system to detect protein–protein interactions. Nature 340, 245– 246 (1989).

    Article  CAS  Google Scholar 

  12. Bean, A. J., Seifert, R., Chen, Y. A., Sacks, R. & Scheller, R. H. Hrs–2 is an ATPase implicated in calcium–regulated secretion. Nature 385, 826– 829 (1997).

    Article  CAS  Google Scholar 

  13. Kozak, M. An analysis of 5'–noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 15, 8125– 8131 (1987).

    Article  CAS  Google Scholar 

  14. Weimbs, T. et al. A conserved domain is present in different families of vesicular fusion proteins: A new superfamily. Proc. Natl. Acad. Sci. USA 94, 3046–3051 ( 1997).

    Article  CAS  Google Scholar 

  15. Ravichandran, V., Chawla, A. & Roche, P. A. Identification of a novel syntaxin– and synaptobrevin/VAMP–binding protein, SNAP–23, expressed in non–neuronal tissues. J. Biol. Chem. 271, 13300–13303 (1996).

    Article  CAS  Google Scholar 

  16. Matthew. W. D., Tsavaler, L. & Reichardt, L. F. Identification of a synaptic vesicle–specific membrane protein with a wide distribution in neuronal and neurosecretory tissue. J. Cell. Biol. 91, 257– 269 (1981).

    Article  CAS  Google Scholar 

  17. Mochida, S. et al. Myosin II is involved in transmitter release at synapses formed between rat sympathetic neurons in culture. Neuron 13, 1131–1142 (1994).

    Article  CAS  Google Scholar 

  18. Mochida, S., Saisu, H., Kobayashi, H. & Abe, T. Impairment of syntaxin by botulinum neurotoxin C1 or antibodies inhibits acetylcholine release but not Ca2+ channel activity. Neuroscience 65, 905–915 (1995).

    Article  CAS  Google Scholar 

  19. Mochida, S., Sheng, Z.–H., Baker, C., Kobayashi, H. & Catterall, W. A. Inhibition of neurotransmission by peptides containing the synaptic protein interaction site of N–type Ca2+ channels. Neuron 17, 781–788 (1996).

    Article  CAS  Google Scholar 

  20. Li, C. et al. Ca2+–dependent and –independent activities of neural and nonneural synaptotagmins. Nature 375, 594–599 (1995).

    Article  CAS  Google Scholar 

  21. Bommert, K. et al. Inhibition of neurotransmitter release by C2–domain peptides implicates synaptotagmin in exocytosis. Nature 363, 163–165 (1993).

  22. Pusch, M. & Neher, E. Rates of diffusional exchange between small cells and a measuring patch pipette. Pflügers Arch. 411, 204–211 ( 1988).

    Article  CAS  Google Scholar 

  23. Cornille, F., Deloye, F., Fournié–Zaluski, M.–C., Roques, B. P. & Poulain, B. Inhibition of neurotransmitter release by synthetic proline–rich peptides shows that the N–terminal domain of vesicle–associated membrane protein/synaptobrevin is critical for neuroexocytosis. J. Biol. Chem. 270, 16826–16832 ( 1995).

    Article  CAS  Google Scholar 

  24. Doussau, F., Clabecq, A., Henry, J.–P., Darchen, F. & Poulain, B. Calcium–dependent regulation of rab 3 in short–term plasticity. J. Neurosci. 18, 3147–3157 (1998).

    Article  CAS  Google Scholar 

  25. Wakshull, E., Johnson, M. I. & Burton, H., Postnatal rat sympathetic neurons in culture. I. A comparison with embryonic neurons. J. Neurophysiol. 42, 1410–1425 (1979).

    Article  CAS  Google Scholar 

  26. Broadie, K. et al. Syntaxin and synaptobrevin function downstream of vesicle docking in Drosophila. Neuron 15, 663– 673 (1995).

    Article  CAS  Google Scholar 

  27. Hunt, J. M. et al. A post–docking role for synaptobrevin in synaptic vesicle fusion. Neuron 12, 1269– 1279 (1994).

    Article  CAS  Google Scholar 

  28. Sweeney, S. T., Broadie, K., Keane, J., Niemann, H. & O'Kane, C. J. Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14, 341– 351 (1995).

    Article  CAS  Google Scholar 

  29. Sheng, Z.–H., Rettig, J., Cook, T. & Catterall, W. A. Calcium–dependent interaction of N–type calcium channels with the synaptic core complex. Nature 379, 451–454 (1996).

    Article  CAS  Google Scholar 

  30. Dunkley, P. R. et al. A rapid percoll gradient procedure for isolation of synaptosomes directly from an S1 fraction: homogeneity and morphology of subcellular fractions. Brain Res. 441, 59–71 (1988).

    Article  CAS  Google Scholar 

  31. Hillier, L. et al., Generation and analysis of 280,000 human expressed sequence tags. Genome Res. 6, 807– 828 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Q. Lao for help with the yeast two–hybrid system, X. Zheng for help with synaptosome fractionation, M Takahashi for antibodies, P.A. Roche for SNAP–23 cDNA and S. C. Landis, H. Gainer, R. D. G. McKay, M. Mayer, H. Arnheiter and J. Rettig for comments on the manuscript. This work was supported by the intramural research program of NINDS, NIH (J.M.I and Z.–H.S.), HHMI–NIH Research Scholars Program (J.M.I.), grants from The Japanese Ministry of Education, Science and Culture (S.M.) and the Human Frontier Science Program (S.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zu-Hang Sheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilardi, J., Mochida, S. & Sheng, ZH. Snapin: a SNARE–associated protein implicated in synaptic transmission . Nat Neurosci 2, 119–124 (1999). https://doi.org/10.1038/5673

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/5673

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing