Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MEN and SIN: what's the difference?

Key Points

  • A signalling network known as the mitotic exit network (MEN) in S. cerevisiae and the septation initiation network (SIN) in S. pombe, although conserved, seem to regulate different cell-cycle transitions in the two yeasts. MEN regulates the inactivation of mitotic CDKs at the end of mitosis, whereas SIN controls cytokinesis after mitotic CDK inactivation.

  • But, although these two pathways seem different at first glance, studies are beginning to indicate that the pathways, their regulation and their outputs might not actually be that different. Based on this, we propose that MEN and SIN have similar functions in budding and fission yeast - that is, to both downregulate mitotic CDKs and promote cytokinesis.

  • Therefore, to understand how the cell ensures that the exit from mitosis and cytokinesis occur only at the end of each cell cycle, it will crucial to identify all the signals that control and regulate the MEN and SIN.

  • There is also evidence for homologues of these pathways in higher eukaryotes. Further work might not only shed light on how exit from mitosis and cytokinesis are regulated in higher eukaryotes but also explain some of the mechanisms that lead to aneuploidy, which is often associated with cancerous transformation.

Abstract

A conserved signalling cascade — termed the mitotic-exit network in budding yeast and the septation-initiation network in fission yeast — controls key events during exit from mitosis and cytokinesis. Although the components of these signalling networks are highly conserved between the two yeasts, the outputs seem quite different. How, then, do these two pathways function, and how are they regulated?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cdc14 and clp1/flp1 control mitotic CDK activity.
Figure 2: MEN and SIN components — a model for their function in the pathways and signals that regulate them.
Figure 3: Localization of MEN components during the cell cycle.
Figure 4: Localization of SIN components during the cell cycle.

Similar content being viewed by others

References

  1. Morgan, D. O. Regulation of the APC and the exit from mitosis. Nature Cell Biol. 1, E47–E53 (1999).

    CAS  PubMed  Google Scholar 

  2. Zachariae, W., Schwab, M., Nasmyth, K. & Seufert, W. Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex. Science 282, 1721–1724 (1998).

    CAS  PubMed  Google Scholar 

  3. Nasmyth, K., Peters, J. M. & Uhlmann, F. Splitting the chromosome: cutting the ties that bind sister chromatids. Science 288, 1379–1385 (2000).

    CAS  PubMed  Google Scholar 

  4. McCollum, D. & Gould, K. L. Timing is everything: regulation of mitotic exit and cytokinesis by the MEN and SIN. Trends Cell Biol. 11, 89–95 (2001).

    CAS  PubMed  Google Scholar 

  5. Wassmann, K. & Benezra, R. Mitotic checkpoints: from yeast to cancer. Curr. Opin. Genet. Dev. 11, 83–90 (2001).

    CAS  PubMed  Google Scholar 

  6. Surana, U. et al. Destruction of the CDC28/CLB mitotic kinase is not required for the metaphase to anaphase transition in budding yeast. EMBO J. 12, 1969–1978 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Shirayama, M., Matsui Y. & Toh-e, A. The yeast TEM1 gene, which encodes a GTP-binding protein, is involved in termination of M phase. Mol. Cell. Biol. 14, 7476–7482 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Shirayama, M., Zachariae, W., Ciosk, R. & Nasmyth, K. The Polo-like kinase Cdc5p and the WD-repeat protein Cdc20p/fizzy are regulators and substrates of the anaphase promoting complex in Saccharomyces cerevisiae. EMBO J. 17, 1336–1349 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Jaspersen, S. L., Charles, J. F., Tinker-Kulberg, R. L. & Morgan, D. O. A late mitotic regulatory network controlling cyclin destruction in Saccharomyces cerevisiae. Mol. Biol. Cell 9, 2803–2817 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grandin, N. & Reed, S. I. Differential function and expression of Saccharomyces cerevisiae B-type cyclins in mitosis and meiosis. Mol. Cell. Biol. 13, 2113–2125 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Koepp, D. M., Harper, J. W. & Elledge, S. J. How the cyclin became a cyclin: regulated proteolysis in the cell cycle. Cell 97, 431–434 (1999).

    CAS  PubMed  Google Scholar 

  12. Tyers, M. & Jorgensen, P. Proteolysis and the cell cycle: with this RING I do thee destroy. Curr. Opin. Genet. Dev. 10, 54–64 (2000).

    CAS  PubMed  Google Scholar 

  13. Zachariae, W. Progression into and out of mitosis. Curr. Opin. Cell Biol. 11, 708–716 (1999).

    CAS  PubMed  Google Scholar 

  14. Visintin, R. et al. The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol. Cell 2, 709–718 (1998).

    CAS  PubMed  Google Scholar 

  15. Jaspersen, S. L., Charles, J. F. & Morgan, D. O. Inhibitory phosphorylation of the APC regulator Hct1 is controlled by the kinase Cdc28 and the phosphatase Cdc14. Curr. Biol. 9, 227–236 (1999).

    CAS  PubMed  Google Scholar 

  16. Moll, T., Tebb, G., Surana, U., Robitsch, H. & Nasmyth, K. The role of phosphorylation and the CDC28 protein kinase in cell cycle-regulated nuclear import of the S. cerevisiae transcription factor SWI5. Cell 66, 743–758 (1991).

    CAS  PubMed  Google Scholar 

  17. Knapp, D., Bhoite, L., Stillman, D. J. & Nasmyth, K. The transcription factor Swi5 regulates expression of the cyclin kinase inhibitor p40SIC1. Mol. Cell. Biol. 16, 5701–5707 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Toyn, J. H., Johnson, A. L., Donovan, J. D., Toone, W. M. & Johnston, L. H. The Swi5 transcription factor of Saccharomyces cerevisiae has a role in exit from mitosis through induction of the cdk-inhibitor Sic1 in telophase. Genetics 145, 85–96 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Schwab, M., Lutum, A. S. & Seufert, W. Yeast Hct1 is a regulator of Clb2 cyclin proteolysis. Cell 90, 683–693 (1997).

    CAS  PubMed  Google Scholar 

  20. Visintin, R., Prinz, S. & Amon, A. CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science 278, 460–463 (1997).

    CAS  PubMed  Google Scholar 

  21. Shou, W. et al. Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Cell 97, 233–244 (1999).

    CAS  PubMed  Google Scholar 

  22. Straight, A. F. et al. Net1, a Sir2-associated nucleolar protein required for rDNA silencing and nucleolar integrity. Cell 97, 245–256 (1999).

    CAS  PubMed  Google Scholar 

  23. Visintin, R., Hwang, E. S. & Amon, A. Cfi1 prevents premature exit from mitosis by anchoring Cdc14 phosphatase in the nucleolus. Nature 398, 818–823 (1999).

    CAS  PubMed  Google Scholar 

  24. Bachant, J. B. & Elledge, S. J. Mitotic treasures in the nucleolus. Nature 398, 757–758 (1999).

    CAS  PubMed  Google Scholar 

  25. Traverso, E. E. et al. Characterization of the Net1 cell cycle-dependent regulator of the Cdc14 phosphatase from budding yeast. J. Biol. Chem. 276, 21924–21931 (2001).

    CAS  PubMed  Google Scholar 

  26. Toyn, J. H. & Johnston, L. H. The Dbf2 and Dbf20 protein kinases of budding yeast are activated after the metaphase to anaphase cell cycle transition. EMBO J. 13, 1103–1113 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Grandin, N., de Almeida, A. & Charbonneau, M. The Cdc14 phosphatase is functionally associated with the Dbf2 protein kinase in Saccharomyces cerevisiae. Mol. Gen. Genet. 258, 104–116 (1998).

    CAS  PubMed  Google Scholar 

  28. Lee, S. E., Frenz, L. M., Wells, N. J., Johnson, A. L. & Johnston, L. H. Order of function of the budding-yeast mitotic exit-network proteins Tem1, Cdc15, Mob1, Dbf2, and Cdc5. Curr. Biol. 11, 784–788 (2001).

    CAS  PubMed  Google Scholar 

  29. Visintin, R. & Amon, A. Regulation of the mitotic exit pathway protein kinases Cdc15 and Dbf2. Mol. Biol. Cell (in the press).

  30. Lee, J., Hwang, H. S., Kim, J. & Song, K. Ibd1p, a possible spindle pole body associated protein, regulates nuclear division and bud separation in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1449, 239–253 (1999).

    CAS  PubMed  Google Scholar 

  31. Li, R. Bifurcation of the mitotic checkpoint pathway in budding yeast. Proc. Natl Acad. Sci. USA 96, 4989–4994 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Shirayama, M., Matsui, Y., Tanaka, K. & Toh-e, A. Isolation of a CDC25 family gene, MSI2/LTE1, as a multicopy suppressor of ira1. Yeast 10, 451–461 (1994).

    CAS  PubMed  Google Scholar 

  33. Hoyt, M. A., Totis, L. & Roberts, B. T. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66, 507–517 (1991).

    CAS  PubMed  Google Scholar 

  34. Krishnan, R., Pangilinan, F., Lee, C. & Spencer, F. Saccharomyces cerevisiae BUB2 prevents mitotic exit in response to both spindle and kinetochore damage. Genetics 156, 489–500 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Alexandru, G., Zachariae, W., Schleiffer, A. & Nasmyth, K. Sister chromatid separation and chromosome re-duplication are regulated by different mechanisms in response to spindle damage. EMBO J. 18, 2707–2721 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bardin, A. J., Visintin, R. & Amon, A. A mechanism for coupling exit from mitosis to partitioning of the nucleus. Cell 102, 21–31 (2000).The authors determine the localization of Tem1 and Lte1 during the cell cycle, and find that the nuclear-positioning defects observed in cells that lack cytoplasmic dynein cause a delay in exit from mitosis due to a failure to release Cdc14 from Cfi1/Net1. A model is proposed whereby the cell uses the position of the nucleus to control mitotic exit. By spatially segregating GTPase and GEF activities until the appropriate time, the cell links nuclear migration to mitotic exit.

    CAS  PubMed  Google Scholar 

  37. Pereira, G., Hofken, T., Grindlay, J., Manson, C. & Schiebel, E. The Bub2p spindle checkpoint links nuclear migration with mitotic exit. Mol. Cell 6, 1–10 (2000).The localization of the mitotic-exit components, Bub2, Bfa1, Tem1 (on the spindle pole body) and Lte1 (in the bud) is shown. The authors also find that Bub2 and Bfa1 have a role in preventing mitotic exit when astral microtubules are perturbed, whereas the mitotic-spindle checkpoint component Mad2 does not. They show that the activity of Bub2–Bfa1 correlates to the position of the mitotic spindle. When nuclear division occurs in the mother cell, which leads to mis-positioning of the mitotic spindle, the MEN is inhibited in a BUB2 - and BFA1 -dependent manner. The authors propose that the position of the mitotic spindle controls the timing of mitotic exit.

    CAS  PubMed  Google Scholar 

  38. Fraschini, R., Formenti, E., Lucchini, G. & Piatti, S. Budding yeast Bub2 is localized at spindle pole bodies and activates the mitotic checkpoint via a different pathway from Mad2. J. Cell Biol. 145, 979–991 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Adams, I. R. & Kilmartin, J. V. Spindle pole body duplication: a model for centrosome duplication? Trends Cell Biol. 10, 329–335 (2000).

    CAS  PubMed  Google Scholar 

  40. Gruneberg, U., Campbell, K., Simpson, C., Grindlay, J. & Schiebel, E. Nud1p links astral microtubule organization and the control of exit from mitosis. EMBO J. 19, 6475–6488 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hartwell, L. H., Mortimer, R. K., Culotti, J. & Culotti, M. Genetic control of the cell division cycle in yeast: V. Genetic analysis of cdc mutants. Genetics 74, 267–286 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Shirayama, M., Matsui, Y. & Toh-e, A. Dominant mutant alleles of yeast protein kinase gene CDC15 suppress the lte1 defect in termination of M phase and genetically interact with CDC14. Mol. Gen. Genet. 251, 176–185 (1996).

    CAS  PubMed  Google Scholar 

  43. Cenamor, R., Jimenez, J., Cid, V. J., Nombela, C. & Sanchez, M. The budding yeast Cdc15 localizes to the spindle pole body in a cell-cycle-dependent manner. Mol. Cell Biol. Res. Commun. 2, 178–184 (1999).

    CAS  PubMed  Google Scholar 

  44. Xu, S., Huang, H. K., Kaiser, P., Latterich, M. & Hunter, T. Phosphorylation and spindle pole body localization of the Cdc15p mitotic regulatory protein kinase in budding yeast. Curr. Biol. 10, 329–332 (2000).

    CAS  PubMed  Google Scholar 

  45. Menssen, R., Neutzner, A. & Seufert, W. Asymmetric spindle pole localization of yeast Cdc15 kinase links mitotic exit and cytokinesis. Curr. Biol. 11, 345–350 (2001).

    CAS  PubMed  Google Scholar 

  46. Asakawa, K., Yoshida, S., Otake, F. & Toh-e, A. A novel functional domain of Cdc15 kinase is required for its interaction with Tem1 GTPase in Saccharomyces cerevisiae. Genetics 157, 1437–1450 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Mah, A. S., Jang, J. & Deshaies, R. J. Protein kinase Cdc15 activates the Dbf2–Mob1 kinase complex. Proc. Natl Acad. Sci. USA 98, 7325–7330 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Luca, F. C. & Winey, M. MOB1, an essential yeast gene required for completion of mitosis and maintenance of ploidy. Mol. Biol. Cell 9, 29–46 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Komarnitsky, S. I. et al. DBF2 protein kinase binds to and acts through the cell cycle-regulated MOB1 protein. Mol. Cell. Biol. 18, 2100–2107 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kitada, K., Johnson, A. L., Johnston, L. H. & Sugino, A. A multicopy suppressor gene of the Saccharomyces cerevisiae G1 cell cycle mutant gene dbf4 encodes a protein kinase and is identified as CDC5. Mol. Cell. Biol. 13, 4445–4457 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee, S. E. et al. The Bub2-dependent mitotic pathway in yeast acts every cell cycle and regulates cytokinesis. J. Cell Sci. 114, 2345–2354 (2001).

    CAS  PubMed  Google Scholar 

  52. Hoyt, M. A. Exit from mitosis: spindle pole power. Cell 102, 267–270 (2000).

    CAS  PubMed  Google Scholar 

  53. Yeh, E., Skibbens, R. V., Cheng, J. W., Salmon, E. D. & Bloom, K. Spindle dynamics and cell cycle regulation of dynein in the budding yeast, Saccharomyces cerevisiae. J. Cell Biol. 130, 687–700 (1995).

    CAS  PubMed  Google Scholar 

  54. Muhua, L., Adames, N. R., Murphy, M. D., Shields, C. R. & Cooper, J. A. A cytokinesis checkpoint requiring the yeast homologue of an APC-binding protein. Nature 393, 487–491 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Bloecher, A., Venturi, G. M. & Tatchell, K. Anaphase spindle position is monitored by the BUB2 checkpoint. Nature Cell Biol. 2, 556–558 (2000).

    CAS  PubMed  Google Scholar 

  56. Daum, J. R., Gomez-Ospina, N., Winey, M. & Burke, D. J. The spindle checkpoint of Saccharomyces cerevisiae responds to separable microtubule-dependent events. Curr. Biol. 10, 1375–1378 (2000).The authors first show that Bub2–GFP localizes to the cytoplasmic face of the SPB. Then the relative roles of the Bub2 and Mad2 branches of the spindle checkpoint are investigated. When the mitotic spindle is mis-positioned, a proportion of these cells delay mitosis until the spindle is repositioned and consequently, normal cells with 1N DNA content result. However, when BUB2 is deleted, a proportion of these cells mis-segregate DNA due to an inability to delay mitosis. By contrast, deletion of MAD2 has no effect and cells can still delay mitosis until the nucleus is repositioned. A model is proposed whereby the Bub2 checkpoint monitors cytoplasmic microtubule events and the Mad2 checkpoint monitors nuclear microtubule events.

    CAS  PubMed  Google Scholar 

  57. Wang, Y., Hu, F. & Elledge, S. J. The Bfa1/Bub2 GAP complex comprises a universal checkpoint required to prevent mitotic exit. Curr. Biol. 10, 1379–1382 (2000).Bub2 and Bfa1 are found to be essential for inhibiting mitotic exit in a DNA-damage-induced metaphase arrest. Likewise, Bub2 and Bfa1 are found to be essential for preventing mitotic exit in situations in which the spindle is mis-aligned and anaphase occurs in the mother cell. The authors propose a model in which the Bub2 and Bfa1 GAP is needed for inhibition of the mitotic-exit pathway in all situations in which the cell arrests in G2/M with high CDK activity, such as DNA-damage- and spindle-damage-induced arrests as well as spindle-positioning defects.

    CAS  PubMed  Google Scholar 

  58. Adames, N. R., Oberle, J. R. & Cooper, J. A. The surveillance mechanism of the spindle position checkpoint in yeast. J. Cell Biol. 153, 159–168 (2001).This paper indicates that the presence of cytoplasmic microtubules in the bud neck might provide an inhibitory signal for the MEN by regulating the activity of Bub2–Bfa1. The authors correlate the loss of cytoplasmic microtubules from the bud neck with exit from mitosis. In mutants defective in cytoplasmic microtubule nucleation, exit from mitosis occurs inappropriately. The authors also propose that LTE1 has no role in controlling the activity of the MEN, at least at high temperatures.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Cohen-Fix, O. & Koshland, D. Pds1p of budding yeast has dual roles: inhibition of anaphase initiation and regulation of mitotic exit. Genes Dev. 13, 1950–1959 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Tinker-Kulberg, R. L. & Morgan, D. O. Pds1 and Esp1 control both anaphase and mitotic exit in normal cells and after DNA damage. Genes Dev. 13, 1936–1949 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Shirayama, M., Toth, A., Galova, M. & Nasmyth, K. APC(Cdc20) promotes exit from mitosis by destroying the anaphase inhibitor Pds1 and cyclin Clb5. Nature 402, 203–207 (1999).

    CAS  PubMed  Google Scholar 

  62. Gardner, R. D. & Burke, D. J. The spindle checkpoint: two transitions, two pathways. Trends Cell Biol. 10, 154–158 (2000).

    CAS  PubMed  Google Scholar 

  63. Zhou, B. B. & Elledge, S. J. The DNA damage response: putting checkpoints in perspective. Nature 408, 433–439 (2000).

    CAS  PubMed  Google Scholar 

  64. Fesquet, D. et al. A Bub2p-dependent spindle checkpoint pathway regulates the Dbf2p kinase in budding yeast. EMBO J. 18, 2424–2434 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Yamano, H., Gannon, J. & Hunt, T. The role of proteolysis in cell cycle progression in Schizosaccharomyces pombe. EMBO J. 15, 5268–5279 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Moreno, S. & Nurse, P. Regulation of progression through the G1 phase of the cell cycle by the rum1+ gene. Nature 367, 236–242 (1994).

    CAS  PubMed  Google Scholar 

  67. Kitamura, K., Maekawa, H. & Shimoda, C. Fission yeast Ste9, a homolog of Hct1/Cdh1 and Fizzy-related, is a novel negative regulator of cell cycle progression during G1-phase. Mol. Biol. Cell 9, 1065–1080 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kominami, K., Seth-Smith, H. & Toda, T. Apc10 and Ste9/Srw1, two regulators of the APC-cyclosome, as well as the CDK inhibitor Rum1 are required for G1 cell-cycle arrest in fission yeast. EMBO J. 17, 5388–5399 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Cueille, N. et al. S. pombe cdc14 orthologue. J. Cell Sci. (in the press).A S. pombe orthologue of S. cerevisiae CDC14 , called flp1+, was identified and proposed to have a reduced role in cell-cycle regulation. Localization of flp1 is similar to that of Cdc14 in S. cerevisiae : it is in the nucleolus and on the SPB during interphase, and becomes re-localized to the mitotic spindles, the nucleus and contractile ring during mitosis. flp1 inhibits mitotic CDKs by regulating the tyrosine 15 phosphorylation of cdc2. The role of the SIN in flp1 release is also discussed, as well as a role for both in the cytokinesis checkpoint. The SIN and flp1 seem to be involved in a feedback loop, and the authors propose that, although flp1 is not the essential effector of the SIN, flp1 might help potentiate SIN signalling.

  70. Trautmann, S. et al. Fission yeast Clp1p phosphatase regulates G2/M transition and coordination of cytokinesis with cell cycle progression. Curr. Biol. 11, 931–940 (2001).clp1+ was identified as a S. cerevisiae CDC14 orthologue in S. pombe . The authors show that clp1 functions in G2 by inhibiting cdc2 through regulation of tyrosine 15 phosphorylation. clp1+ is also needed for the cytokinesis checkpoint, which blocks cells in G2 in response to the inability to properly form a septum. Clp1 is nucleolar and found on the SPB during interphase, and becomes nuclear and localizes to the septum during mitosis. An active SIN pathway is needed to maintain clp1 release from the nucleolus. The authors conclude that clp1 regulates the cell cycle in a very different way from Cdc14.

    CAS  PubMed  Google Scholar 

  71. Morgan, D. O. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu. Rev. Cell Dev. Biol. 13, 261–291 (1997).

    CAS  PubMed  Google Scholar 

  72. Le Goff, X., Utzig, S. & Simanis, V. Controlling septation in fission yeast: finding the middle, and timing it right. Curr. Genet. 35, 571–584 (1999).

    CAS  PubMed  Google Scholar 

  73. Schmidt, S., Sohrmann, M., Hofmann, K., Woollard, A. & Simanis, V. The Spg1p GTPase is an essential, dosage-dependent inducer of septum formation in Schizosaccharomyces pombe. Genes Dev. 11, 1519–1534 (1997).

    CAS  PubMed  Google Scholar 

  74. Sohrmann, M., Schmidt, S., Hagan, I. & Simanis, V. Asymmetric segregation on spindle poles of the Schizosaccharomyces pombe septum-inducing protein kinase Cdc7p. Genes Dev. 12, 84–94 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Minet, M., Nurse, P., Thuriaux, P. & Mitchison, J. M. Uncontrolled septation in a cell division cycle mutant of the fission yeast Schizosaccharomyces pombe. J. Bacteriol. 137, 440–446 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Fankhauser, C., Marks, J., Reymond, A. & Simanis, V. The S. pombe cdc16 gene is required both for maintenance of p34cdc2 kinase activity and regulation of septum formation: a link between mitosis and cytokinesis? EMBO J. 12, 2697–2704 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Song, K., Mach, K. E., Chen, C. Y., Reynolds, T. & Albright, C. F. A novel suppressor of ras1 in fission yeast, byr4, is a dosage-dependent inhibitor of cytokinesis. J. Cell Biol. 133, 1307–1319 (1996).

    CAS  PubMed  Google Scholar 

  78. Furge, K. A., Wong, K., Armstrong, J., Balasubramanian, M. & Albright, C. F. Byr4 and Cdc16 form a two-component GTPase-activating protein for the Spg1 GTPase that controls septation in fission yeast. Curr. Biol. 8, 947–954 (1998).

    CAS  PubMed  Google Scholar 

  79. Jwa, M. & Song, K. Byr4, a dosage-dependent regulator of cytokinesis in S. pombe, interacts with a possible small GTPase pathway including Spg1 and Cdc16. Mol. Cells 8, 240–245 (1998).

    CAS  PubMed  Google Scholar 

  80. Furge, K. A. et al. Regions of Byr4, a regulator of septation in fission yeast, that bind Spg1 or Cdc16 and form a two-component GTPase-activating protein with Cdc16. J. Biol. Chem. 274, 11339–11343 (1999).

    CAS  PubMed  Google Scholar 

  81. Cerutti, L. & Simanis, V. Asymmetry of the spindle pole bodies and spg1p GAP segregation during mitosis in fission yeast. J. Cell Sci. 112, 2313–2321 (1999).

    CAS  PubMed  Google Scholar 

  82. Li, C., Furge, K. A., Cheng, Q. C. & Albright, C. F. Byr4 localizes to spindle-pole bodies in a cell cycle-regulated manner to control Cdc7 localization and septation in fission yeast. J. Biol. Chem. 275, 14381–14387 (2000).

    CAS  PubMed  Google Scholar 

  83. Chang, L. & Gould, K. L. Sid4p is required to localize components of the septation initiation pathway to the spindle pole body in fission yeast. Proc. Natl Acad. Sci. USA 97, 5249–5254 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Krapp, A., Schmidt, S., Cano, E. & Simanis, V. S. pombe cdc11p, together with sid4p, provides an anchor for septation initiation network proteins on the spindle pole body. Curr. Biol. (in the press).

  85. Guertin, D. A., Chang, L., Irshad, F., Gould, K. L. & McCollum, D. The role of the sid1p kinase and cdc14p in regulating the onset of cytokinesis in fission yeast. EMBO J. 19, 1803–1815 (2000).sid1 is found to be a new member of the SIN, which works with an associated protein, cdc14. sid1 is shown to function downstream of spg1 and cdc7, but upstream of sid2. The authors find that the SPB localization of sid1 depends both on active spg1 as well as low CDK activity. sid1–cdc14 seems to link septation to mitotic CDK activity, ensuring that septation does not occur until mitotic CDK activity has been reduced.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Balasubramanian, M. K. et al. Isolation and characterization of new fission yeast cytokinesis mutants. Genetics 149, 1265–1275 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Sparks, C. A., Morphew, M. & McCollum, D. Sid2p, a spindle pole body kinase that regulates the onset of cytokinesis. J. Cell Biol. 146, 777–790 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Hou, M. C., Salek, J. & McCollum, D. Mob1p interacts with the Sid2p kinase and is required for cytokinesis in fission yeast. Curr. Biol. 10, 619–622 (2000).An orthologue of S. cerevisiae Mob1 is cloned from S. pombe and called mob1. mob1 is present on SPBs and found to interact with sid2. mob1+ is necessary for sid2 localization to both the SPB and the septum. sid2 and mob1 translocate to the septum during late stages of mitosis, indicating that they are important in carrying the 'make a septum' message from the SPB to the site of cytokinesis.

    CAS  PubMed  Google Scholar 

  89. Salimova, E., Sohrmann, M., Fournier, N. & Simanis, V. The S. pombe orthologue of the S. cerevisiae mob1 gene is essential and functions in signalling the onset of septum formation. J. Cell Sci. 113, 1695–1704 (2000).A homologue of S. cerevisiae MOB1 was cloned from S. pombe and found to be a member of the SIN pathway. mob1 localizes to the SPB as well as to the medial ring late in the cell cycle. mob1 can form a complex with sid2. The authors propose that the mob1–sid2 complex is involved in carrying the septation signal from the SPB to the septum late in the cell cycle.

    CAS  PubMed  Google Scholar 

  90. Ohkura, H., Hagan, I. M. & Glover, D. M. The conserved Schizosaccharomyces pombe kinase plo1, required to form a bipolar spindle, the actin ring, and septum, can drive septum formation in G1 and G2 cells. Genes Dev. 9, 1059–1073 (1995).

    CAS  PubMed  Google Scholar 

  91. Mulvihill, D. P., Petersen, J., Ohkura, H., Glover, D. M. & Hagan, I. M. Plo1 kinase recruitment to the spindle pole body and its role in cell division in Schizosaccharomyces pombe. Mol. Biol. Cell 10, 2771–2785 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Tanaka, K. et al. The role of Plo1 kinase in mitotic commitment and septation in Schizosaccharomyces pombe. EMBO J. 20, 1259–1270 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Liu, J., Wang, H., McCollum, D. & Balasubramanian, M. K. Drc1p/Cps1p, a 1,3-β-glucan synthase subunit, is essential for division septum assembly in Schizosaccharomyces pombe. Genetics 153, 1193–1203 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Le Goff, X., Woollard, A. & Simanis, V. Analysis of the cps1 gene provides evidence for a septation checkpoint in Schizosaccharomyces pombe. Mol. Gen. Genet. 262, 163–172 (1999).

    CAS  PubMed  Google Scholar 

  95. Liu, J., Wang, H. & Balasubramanian, M. K. A checkpoint that monitors cytokinesis in Schizosaccharomyces pombe. J. Cell Sci. 113, 1223–1230 (2000).The authors characterize the cytokinesis checkpoint, which halts cell cycle progression when a septum fails to form. A mutation in the drc1+/cps1+ gene prevents the cells from forming a septum. Cells lacking drc1+/cps1+ arrest with two nuclei with a 2n DNA content. The authors show that this arrest is mediated by wee1 and cdc2. The authors also show that a transient depolymerization of the actin cytoskeleton can allow the arrested cells to escape the checkpoint arrest, indicating that the checkpoint is somehow sensing the state of the actin cytoskeleton.

    CAS  PubMed  Google Scholar 

  96. Cuif, M. H. et al. Characterization of GAPCenA, a GTPase activating protein for Rab6, part of which associates with the centrosome. EMBO J. 18, 1772–1782 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Martinez, O. et al. GTP-bound forms of rab6 induce the redistribution of Golgi proteins into the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 94, 1828–1833 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Justice, R. W., Zilian, O., Woods, D. F., Noll, M. & Bryant, P. J. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev. 9, 534–546 (1995).

    CAS  PubMed  Google Scholar 

  99. Xu, T., Wang, W., Zhang, S., Stewart, R. A. & Yu, W. Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121, 1053–1063 (1995).

    CAS  PubMed  Google Scholar 

  100. Tao, W. et al. Human homologue of the Drosophila melanogaster lats tumour suppressor modulates CDC2 activity. Nature Genet. 21, 177–181 (1999).

    CAS  PubMed  Google Scholar 

  101. Nishiyama, Y. et al. A human homolog of Drosophila warts tumor suppressor, h-warts, localized to mitotic apparatus and specifically phosphorylated during mitosis. FEBS Lett. 459, 159–165 (1999).

    CAS  PubMed  Google Scholar 

  102. Moreno, C. S., Lane, W. S. & Pallas, D. C. A mammalian homolog of yeast mob1 is both a member and a putative substrate of striatin family-protein phosphatase 2a complexes. J. Biol. Chem. 276, 24253–24260 (2001).

    CAS  PubMed  Google Scholar 

  103. Glover, D. M., Hagan, I. M. & Tavares, A. A. Polo-like kinases: a team that plays throughout mitosis. Genes Dev. 12, 3777–3787 (1998).

    CAS  PubMed  Google Scholar 

  104. Descombes, P. & Nigg, E. A. The polo-like kinase Plx1 is required for M phase exit and destruction of mitotic regulators in Xenopus egg extracts. EMBO J. 17, 1328–1335 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Lee, K. S., Grenfell, T. Z., Yarm, F. R. & Erikson, R. L. Mutation of the polo-box disrupts localization and mitotic functions of the mammalian polo kinase Plk. Proc. Natl Acad. Sci. USA 95, 9301–9306 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Lee, K. S., Song, S. & Erikson, R. L. The polo-box-dependent induction of ectopic septal structures by a mammalian polo kinase, plk, in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 96, 14360–14365 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Moutinho-Santos, T., Sampaio, P., Amorim, I., Costa, M. & Sunkel, C. E. In vivo localisation of the mitotic POLO kinase shows a highly dynamic association with the mitotic apparatus during early embryogenesis in Drosophila. Biol. Cell 91, 585–596 (1999).

    CAS  PubMed  Google Scholar 

  108. Hudson, J. W. et al. Late mitotic failure in mice lacking Sak, a polo-like kinase. Curr. Biol. 11, 441–446 (2001).

    CAS  PubMed  Google Scholar 

  109. Li, L., Ernsting, B. R., Wishart, M. J., Lohse, D. L. & Dixon, J. E. A family of putative tumor suppressors is structurally and functionally conserved in humans and yeast. J. Biol. Chem. 272, 29403–29406 (1997).

    CAS  PubMed  Google Scholar 

  110. Li, L., Ljungman, M. & Dixon, J. E. The human Cdc14 phosphatases interact with and dephosphorylate the tumor suppressor protein p53. J. Biol. Chem. 275, 2410–2414 (2000).

    CAS  PubMed  Google Scholar 

  111. Listovsky, T., Zor, A., Laronne, A. & Brandeis, M. Cdk1 is essential for mammalian cyclosome/APC regulation. Exp. Cell Res. 255, 184–191 (2000).

    CAS  PubMed  Google Scholar 

  112. Piel, M., Nordberg, J., Euteneuer, U. & Bornens, M. Centrosome-dependent exit of cytokinesis in animal cells. Science 291, 1550–1553 (2001).This paper shows that the mammalian centrosome has an important role in cytokinesis. The behaviour of GFP-tagged centrioles shows a post-anaphase repositioning of the old centriole to the midbody that is essential for cytokinesis, as ablation of the centriole causes defects in cytokinesis.

    CAS  PubMed  Google Scholar 

  113. Khodjakov, A. & Rieder, C. L. Centrosomes enhance the fidelity of cytokinesis in vertebrates and are required for cell cycle progression. J. Cell Biol. 153, 237–242 (2001).This study investigates the effects of destroying centrosomes after prophase. The authors find that although anaphase occurs normally and can produce two acentrosomal daugher cells, cytokinesis is markedly affected with 30–50% of cells failing to execute cytokinesis properly.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Jimenez, J. et al. Morphogenesis beyond cytokinetic arrest in Saccharomyces cerevisiae. J. Cell Biol. 143, 1617–1634 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Frenz, L. M., Lee, S. E., Fesquet, D. & Johnston, L. H. The budding yeast Dbf2 protein kinase localises to the centrosome and moves to the bud neck in late mitosis. J. Cell Sci. 113, 3399–3408 (2000).

    CAS  PubMed  Google Scholar 

  116. Song, S., Grenfell, T. Z., Garfield, S., Erikson, R. L. & Lee, K. S. Essential function of the polo box of Cdc5 in subcellular localization and induction of cytokinetic structures. Mol. Cell. Biol. 20, 286–298 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Song, S. & Lee, K. S. A novel function of Saccharomyces cerevisiae CDC5 in cytokinesis. J. Cell Biol. 152, 451–469 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Yoshida, S., Toh-e, A. Regulation of the localization of Dbf2 and Mob1 during cell division of Saccharomyces cerevisiae. Genes Genet. Syst. 76, 141–147 (2001).

    CAS  PubMed  Google Scholar 

  119. Jaspersen, S. L. & Morgan, D. O. Cdc14 activates cdc15 to promote mitotic exit in budding yeast. Curr. Biol. 10, 615–618 (2000).

    CAS  PubMed  Google Scholar 

  120. Shannon, K. B. & Li, R. The multiple roles of Cyk1p in the assembly and function of the actomyosin ring in budding yeast. Mol. Biol. Cell 10, 283–296 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Lippincott, J., Shannon, K. B., Shou, W., Deshaies, R. J. & Li, R. The Tem1 small GTPase controls actomyosin and septin dynamics during cytokinesis. J. Cell Sci. 114, 1379–1386 (2001).

    CAS  PubMed  Google Scholar 

  122. Amon, A. The spindle checkpoint. Curr. Opin. Genet. Dev. 9, 69–75 (1999).

    CAS  PubMed  Google Scholar 

  123. Nasmyth, K. Control of the yeast cell cycle by the Cdc28 protein kinase. Curr. Opin. Cell Biol. 5, 166–179 (1993).

    CAS  PubMed  Google Scholar 

  124. Forsburg, S. L. & Nurse, P. Identification of a G1-type cyclin puc1+ in the fission yeast Schizosaccharomyces pombe. Nature 351, 245–248 (1991).

    CAS  PubMed  Google Scholar 

  125. Nigg, E. A. Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. Bioessays 17, 471–480 (1995).

    CAS  PubMed  Google Scholar 

  126. Uhlmann, F. Secured cutting: controlling separase at the metaphase to anaphase transition. EMBO Rep. 2, 487–492 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Burke, D. J. Complexity in the spindle checkpoint. Curr. Opin. Genet. Dev. 10, 26–31 (2000).

    CAS  PubMed  Google Scholar 

  128. Chen, J. & Fang, G. MAD2B is an inhibitor of the anaphase-promoting complex. Genes Dev. 15, 1765–1770 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Pfleger, C. M., Salic, A., Lee, E. & Kirschner, M. Inhibition of Cdh1-APC by the MAD2-related protein MAD2L2: a novel mechanism for regulating Cdh1. Genes Dev. 15, 1759–1764 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Adams, I. R. & Kilmartin, J. V. Localization of core spindle pole body (SPB) components during SPB duplication in Saccharomyces cerevisiae. J. Cell Biol. 145, 809–823 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Cheng, L., Hunke, L. & Hardy, C. F. Cell cycle regulation of the Saccharomyces cerevisiae polo-like kinase cdc5p. Mol. Cell. Biol. 18, 7360–7370 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to D. McCollum and V. Simanis for communicating results before publication. We thank members of the Amon lab for comments on the manuscript and apologize to our colleagues whose work we could not include due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelika Amon.

Related links

Related links

DATABASES

Locuslink:

CDC2

CDC14A

CDC14B

Fnk/Prk

GAPCENA

LATS1

Plk

Polo

Sak

Snk

warts

 Saccharomyces Genome Database:

Bfa1

Byr4

Bub2

Cdc5

Cdc14

Cdc15

Cdc20

Cdh1/Hct1

Clb1

Clb2

Clb3

Clb4

Clb5

Clb6

Cln1

Cln2

Cln3

Cyk1

Dbf2

Esp1

Iqg1

Lte1

Mad2

Mob1

Net1

Nud1

Pds1

Sic1

Swi5

Tem1

Glossary

MITOTIC SPINDLE

An array of microtubules that forms during mitosis to which chromosomes attach and by which chromosomes are segregated to separate daughter cells.

CENTROSOME

The higher eukaryotic equivalent of the spindle-pole body, the centrosome nucleates microtubules, including those that will form the mitotic spindle. It contains two barrel-shaped structures known as centrioles.

CHROMOSOME DECONDENSATION

On entry into mitosis, chromosomes become compacted or 'condensed'. This is especially apparent in fission yeast and higher eukaryotes. During exit from mitosis, this process is reversed and chromosomes become less compacted — a process known as decondensation.

SPINDLE ELONGATION (ANAPHASE B)

After the chromosomes have been pulled to centrosomes, the mitotic spindle lengthens (and in budding yeast, pushes into the growing daughter cell), thereby allowing further separation of the chromosomes.

UBIQUITIN LIGASE

An enzyme which, together with a ubiquitin-conjugating enzyme, attaches ubiquitin peptides to a substrate protein.

26S PROTEASOME

A multi-subunit protease that degrades poly-ubiquitylated proteins.

COHESIN

A protein complex that tethers sister chromatids together from the time they are created (during DNA replication) until cohesin cleavage at the onset of anaphase.

GTPASE-ACTIVATING PROTEIN (GAP)

A protein that inhibits GTPases by increasing their intrinsic ability to hydrolyse GTP, which allows for shorter time in the active, GTP-bound state.

GUANINE-NUCLEOTIDE EXCHANGE FACTOR (GEF)

A protein that activates GTPases by facilitating the exchange of GDP for GTP, thereby allowing for shorter time in the inactive, GDP-bound state.

POLO KINASE

A family of related kinases defined by a conserved region known as the polo box. They are thought to have several roles in the cell, including an important role in centrosome duplication.

SECURIN

(Pds1 in budding yeast, cut2 in fission yeast.) Securin is responsible for keeping separase inactive until metaphase, at which point securin is degraded, thereby liberating separase which, in turn, cleaves the cohesins.

SEPARASE

(Esp1 in budding yeast, cut1 in fission yeast.) A protease that cleaves the cohesin subunit Scc1/Mcd1/Rad21 at two specific sites. Cleavage of these sites by separase allows sister chromatids to separate, leading to the onset of anaphase.

SISTER CHROMATIDS

Chromosomes that have been duplicated during S phase. Sister chromatids are held together by cohesins until metaphase.

KINETOCHORE

A proteinaceous structure that mediates attachment of the chromosomes to microtubules.

MEDIAL RING

A structure in fission yeast, containing F-actin and numerous other proteins, which marks the eventual site of the division septum.

1,3-β-GLUCAN SYNTHASE

An enzyme that makes 1,3-β-glucan, a sugar polymer that is a structural component of the division septum in fission yeast.

F-ACTIN

Filamentous actin. Contraction of filamentous actin is thought to have an important role in cytokinesis.

RAB FAMILY

A conserved family of GTPases whose members are involved in endocytic and exocytic vesicle transport.

MIDBODY

A region of dense matrix material visible in higher eukaryotic cells by electron microscopy. The midbody remains between two daughter cells after the cleavage furrow has contracted.

CLEAVAGE FURROW

A region of the cell membrane in higher eukaryotic cells that ingresses; thought to be a result of contraction of actin and myosin rings.

CENTRIOLE

A cylindrical array of microtubules, two of which are found in the centre of centrosomes and are responsible for nucleation of microtubules.

ACTOMYOSIN AND SEPTIN DYNAMICS

Actomyosin and septin dynamics refers to the contraction of actin, myosin, and septin rings, which is concurrent with cytokinesis in eukaryotic cells.

ANEUPLOIDY

An abnormal number of chromosomes caused by their inaccurate segregation during cell division.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bardin, A., Amon, A. MEN and SIN: what's the difference?. Nat Rev Mol Cell Biol 2, 815–826 (2001). https://doi.org/10.1038/35099020

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35099020

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing