Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The crust and mantle of Mars

Abstract

Clues to the history of Mars are recorded in the chemistry and structure of the planet's crust and mantle. The mantle is the rocky, interior region of the planet that transports heat generated during accretion and subsequent core formation. The crust formed by melting of the upper mantle, and has been shaped and re-distributed by impact, volcanism, mantle flow and erosion. Observations point to a dynamically active interior in the early phases of martian history, followed by a rapid fall-off in heat transport that significantly influenced the geological, geophysical and geochemical evolution of the planet, including the history of water and climate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: The crustal thickness of Mars assuming a constant-density crust and mantle.
Figure 3: Mars Orbiter Camera image of layering in the western Tithonium Chasma/Ius Chasma region of the Valles Marineris, centred at 6.6° S, 269.6° E (ref. 64).
Figure 4: Shaded relief map centred on the north pole of Mars121.
Figure 5: Spherical projection of Mars' topography54 with 0° E longitude at front centre.
Figure 6: Convection calculation illustrating concentration of heat loss in one hemisphere of Mars.

Similar content being viewed by others

References

  1. Sleep, N. H. Martian plate tectonics. J. Geophys. Res. 99, 5639–5655 (1994).

    Article  ADS  Google Scholar 

  2. Bell, J. F. I. et al. Near-infrared imaging of Mars from HST: surface reflectance, photometric properties, and implications for MOLA data. Icarus 138, 25–35 (1999).

    Article  ADS  Google Scholar 

  3. Soderblom, L. A. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 557–593 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  4. Mustard, J. F. et al. The surface of Syrtis Major: composition of the volcanic substrate and mixing with altered dust and soil. J. Geophys. Res. 98, 3387–3400 (1993).

    Article  ADS  Google Scholar 

  5. Mustard, J. F. & Sunshine, J. M. Seeing through the dust: Martian crustal heterogeneity and links to the SNC meteorites. Science 267, 1623–1626 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Bandfield, J. L., Hamilton, V. E. & Christensen, P. R. A global view of Martian surface composition from MGS-TES. Science 287, 1626–1630 (2000).

    Article  ADS  CAS  Google Scholar 

  7. McSween, H. Y. et al. Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder site. J. Geophys. Res. 104, 8679–8715 (1999).

    Article  ADS  CAS  Google Scholar 

  8. McSween, H. Y. Jr SNC meteorites: clues to Martian petrologic evolution? Rev. Geophys. 23, 391–416 (1985).

    Article  ADS  CAS  Google Scholar 

  9. McSween, H. Y. Jr What have we learned about Mars from SNC meteorites? Meteoritics 29, 757–779 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Sherman, D. M., Burns, R. G. & Burns, V., M. Spectral characteristics of the iron oxides with application to the Martian bright region mineralogy. J. Geophys. Res. 87, 10169–10180 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Bell, J. F. in Mineral Spectroscopy: A Tribute to Roger G. Burns (eds Dyan, M. D., McCammon, C. & Schaefer, M. W.) (Geol. Soc. Spec. Pub. 5) 359–380 (Geol. Soc., Boulder, 1996).

    Google Scholar 

  12. Fanale, F. P., Postawko, S. E., Pollack, J. B., Carr, M. H. & Pepin, R. O. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 1135–1179 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  13. Morris, R. V. et al. Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples. J. Geophys. Res. 105, 1757–1817 (2000).

    Article  ADS  CAS  Google Scholar 

  14. Christensen, P. C., Bandfield, J. L., Smith, M. D., Hamilton, V. E. & Clark, R. N. Identification of a basaltic component of the Martian surface from Thermal Emission Spectrometer data. J. Geophys. Res. 105, 9609–9621 (2000).

    Article  ADS  CAS  Google Scholar 

  15. Christensen, P. R. et al. The Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science. J. Geophys. Res. (in the press).

  16. Minitti, M. E. & Rutherford, M. J. Genesis of the Mars Pathfinder “sulfur-free” rock from SNC parental liquids. Geochim. Cosmochim. Acta 64, 2535–2547 (2000).

    Article  ADS  CAS  Google Scholar 

  17. McSween, H. Y. Jr et al. Geochemical evidence for magmatic water within Mars from pyroxenes in the Shergotty meteorite. Nature 409, 487–490 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Noble, S. K. & Pieters, C. M. Type 2 terrain: compositional constraints on the Martian lowlands. Lunar Planet. Sci. Conf. XXXII, Abstr. 1230 〈http://www.lpi.usra.edu/meetings/lpsc2001/pdf/1230.pdf〉 (2001).

  19. Jagoutz, E. Chronology of SNC meteorites. Space Sci. Rev. 56, 13–22 (1991).

    Article  ADS  Google Scholar 

  20. Chen, J. H. & Wasserburg, G. J. Formation ages and evolution of Shergotty and its parent planet from U-Th-Pb systematics. Geochim. Cosmochim. Acta 50, 955–968 (1986).

    Article  ADS  CAS  Google Scholar 

  21. Borg, L. E., Nyquist, L. E., Taylor, L. A., Weisman, H. & Shih, C.-Y. Constraints on Martian differentiation processes from Rb-Sr and Sm-Nd isotopic analyses of the basaltic shergottite QUE94201. Geochim. Cosmochim. Acta 61, 4915–4931 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Bogard, D. D. & Johnson, P. Noble gases in the antarctic meteorite. Science 221, 651–654 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Bogard, D. D., Nyquist, L. E. & Johnson, P. Noble gas contents of shergottites and implications for the Martian origin of SNC meteorites. Geochim. Cosmochim. Acta 48, 1723–1739 (1984).

    Article  ADS  CAS  Google Scholar 

  24. Swindle, T. D., Caffee, M. W. & Hohenberg, C. M. Xenon and other noble gases in shergottites. Geochim. Cosmochim. Acta 50, 1001–1015 (1986).

    Article  ADS  CAS  Google Scholar 

  25. Wiens, R. C., Becker, R. H. & Pepin, R. O. The case for a martian origin of the shergottites. II. Trapped and indigenous gas components in EETA79001 glass. Earth Planet. Sci. Lett. 77, 149–158 (1986).

    Article  ADS  CAS  Google Scholar 

  26. McKay, D. S. et al. Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273, 924–930 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Mittlefeldt, D. W. ALH84001, a cumulate orthopyroxenite member of the martian meteorite clan. Meteoritics 29, 214–221 (1994).

    Article  ADS  Google Scholar 

  28. Ash, R. D., Knott, S. F. & Turner, G. A 4-Gyr shock age for a martian meteorite and implications for the cratering history of Mars. Nature 380, 57–59 (1996).

    Article  ADS  CAS  Google Scholar 

  29. Treiman, A. H. A petrographic history of Martian meteorite ALH84001: two shocks and an ancient age. Meteoritics 30, 294–302 (1995).

    Article  ADS  CAS  Google Scholar 

  30. Treiman, A. H. The history of Allan Hills 84001 revised: multiple shock events. Meteoritics Planet. Sci. 33, 753–764 (1998).

    Article  ADS  CAS  Google Scholar 

  31. Wood, J. A. et al. in Basaltic Volcanism on the Terrestrial Planets (eds McGetchin, T. R., Pepin, R. O. & Phillips, R. J.) 634–699 (Pergamon, New York, 1981).

    Google Scholar 

  32. Bills, B. G. Geodetic constraints on the composition of Mars. J. Geophys. Res. 95, 14131–14136 (1990).

    Article  ADS  Google Scholar 

  33. Folkner, W. M., Yoder, C. F., Yuan, D. N., Standish, E. M. & Preston, R. A. Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars Pathfinder. Science 278, 1749–1752 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Dreibus, G. & Wanke, H. Mars: a volatile-rich planet. Meteoritics 20, 367–382 (1985).

    ADS  CAS  Google Scholar 

  35. Longhi, J., Knittle, E., Holloway, J. R. & Wanke, H. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 184–208 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  36. Bertka, C. M. & Fei, Y. Implications of Mars Pathfinder data for the accretion history of the terrestrial planets. Science 281, 1838–1840 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Wadhwa, M. Redox state of Mars' upper mantle and crust from Eu anomalies in shergottite pyroxenes. Science 291, 1527–1530 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Wanke, H. & Dreibus, G. Chemical composition and accretion history of the terrestrial planets. Phil. Trans. R. Soc. Lond. A 325, 545–557 (1988).

    Article  ADS  CAS  Google Scholar 

  39. Schubert, G. & Spohn, T. Thermal history of Mars and the sulfur content of its core. J. Geophys. Res. 95, 14095–14104 (1990).

    Article  ADS  Google Scholar 

  40. Tanaka, K. L., Scott, D. H. & Greeley, R. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 345–382 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  41. Solomon, S. C. et al. What happened when on Mars? Some insights into the timing of major events from Mars Global Surveyor data. EOS Trans. Am. Geophys. Union P31A-06 (2001).

  42. Mutch, T. A., Arvidson, R. E., Head, J. W., Jones, K. L. & Saunders, R. S. The Geology of Mars (Princeton Univ. Press, Princeton, 1976).

    Google Scholar 

  43. Carr, M. H. The Surface of Mars (Yale Univ. Press, New Haven, 1981).

    Google Scholar 

  44. Smith, D. E. & Zuber, M. T. The shape of Mars and the topographic signature of the hemispheric dichotomy. Science 271, 184–188 (1996).

    Article  ADS  CAS  Google Scholar 

  45. Smith, D. E. et al. The global topography of Mars and implications for surface evolution. Science 284, 1495–1503 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Scott, D. H. & Tanaka, K. L. Geologic map of the western equatorial region of Mars. US Geol. Survey Map I-1802-A (1986).

  47. Greeley, R. & Guest, J. E. Geologic map of the eastern equatorial region of Mars. US Geol. Survey Map I-1802-B (1987).

  48. Sharp, R. P., Soderblom, L. A., Murray, B. C. & Cutts, J. A. The surface of Mars 2. Uncratered terrains. J. Geophys. Res. 76, 331–342 (1971).

    Article  ADS  Google Scholar 

  49. Sharp, R. P. Mars: fretted and chaotic terrains. J. Geophys. Res. 78, 4073–4083 (1973).

    Article  ADS  Google Scholar 

  50. Frey, H., Sakimoto, S. E. & Roark, J. The MOLA topographic signature at the crustal dichotomy boundary. Geophys. Res. Lett. 25, 4409–4412 (1998).

    Article  ADS  Google Scholar 

  51. McGill, G. E. Buried topography of Utopia, Mars: persistence of a giant impact depression. J. Geophys. Res. 94, 2753–2759 (1989).

    Article  ADS  Google Scholar 

  52. Smith, D. E. et al. The gravity field of Mars: results from Mars Global Surveyor. Science 286, 94–97 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Zuber, M. T. et al. Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. Science 287, 1788–1793 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Smith, D. E. et al. Mars Orbiter Laser Altimeter (MOLA): experiment summary after the first year of global mapping of Mars. J. Geophys. Res. (in the press).

  55. Lemoine, F. G. et al. An improved solution of the gravity field of Mars (GMM-2B) from Mars Global Surveyor. J. Geophys. Res. (in the press).

  56. Albee, A. A., Palluconi, F. D. & Arvidson, R. E. Mars Global Surveyor mission: overview and status. Science 279, 1671–1672 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Nimmo, F. & Stevenson, D. Estimates of Martian crustal thickness from viscous relaxation of topography. J. Geophys. Res. 106, 5085–5098 (2001).

    Article  ADS  CAS  Google Scholar 

  58. Sohl, F. & Spohn, T. The interior structure of Mars: implications from SNC meteorites. J. Geophys. Res. 102, 1613–1635 (1997).

    Article  ADS  CAS  Google Scholar 

  59. Janle, P. Bouguer gravity profiles across the highland-lowland escarpment on Mars. Earth, Moon Planets 28, 55–67 (1983).

    Article  Google Scholar 

  60. Spohn, T., Sohl, F. & Breuer, D. Mars. Astron. Astrophys. Rev. 8, 181–236 (1998).

    Article  ADS  Google Scholar 

  61. Bratt, S. R., Solomon, S. C., Head, J. W. & Thurber, C. H. The deep structure of lunar basins: implications for basin formation and modification. J. Geophys. Res. 90, 3049–3064 (1985).

    Article  ADS  Google Scholar 

  62. Zuber, M. T., Smith, D. E., Lemoine, F. G. & Neumann, G. A. The shape and internal structure of the Moon from the Clementine mission. Science 266, 1839–1843 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Solomon, S. C. & Head, J. W. Evolution of the Tharsis province of Mars: the importance of heterogeneous lithospheric thickness and volcanic construction. J. Geophys. Res. 82, 9755–9774 (1982).

    Article  ADS  Google Scholar 

  64. McEwen, A. S., Malin, M. C., Carr, M. H. & Hartmann, W. K. Voluminous volcanism on early Mars revealed in Valles Marineris. Nature 397, 584–586 (1999).

    Article  ADS  CAS  Google Scholar 

  65. Greeley, R. & Spudis, P. D. Volcanism on Mars. Rev. Geophys. 19, 13–41 (1981).

    Article  ADS  CAS  Google Scholar 

  66. Head, J. W., Kreslavsky, M. A. & Pratt, S. Northern lowlands of Mars: evidence for widespread volcanic flooding and tectonic deformation in the Hesperian period. J. Geophys. Res. (in the press).

  67. Withers, P. & Neumann, G. A. Enigmatic northern plains of Mars. Nature 410, 651 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Frey, H., Shockey, K. M., Frey, E. L., Roark, J. H. & Sakimoto, S. E. H. A very large population of likely buried impact basins in the northern lowlands of Mars revealed by MOLA data. Lunar Planet. Sci. Conf. XXXII, Abstr. 1680 〈http://www.lpi.usra.edu/meetings/lpsc2001/pdf/1680.pdf〉 (2001).

  69. Kreslavsky, M. A. & Head, J. W. III Stealth craters in the northern lowlands of Mars: evidence for a buried Early-Hesperian-aged unit. Lunar Planet. Sci. Conf. XXXII, Abstr. 1001 〈http://www.lpi.usra.edu/meetings/lpsc2001/pdf/1001.pdf〉 (2001).

  70. Pike, R. J. Depth/diameter relations of fresh lunar craters: revision from spacecraft data. Geophys. Res. Lett. 1, 291–294 (1974).

    Article  ADS  Google Scholar 

  71. Squyres, S. W. & Kasting, J. F. Early Mars: how warm and how wet? Science 265, 744–749 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Hynek, B. M. & Phillips, R. J. Evidence for extensive denudation of the Martian highlands. Geology 29, 407–410 (2001).

    Article  ADS  Google Scholar 

  73. Phillips, R. J. et al. Ancient geodynamics and global-scale hydrology on Mars. Science 291, 2587–2591 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  74. McGill, G. E. & Dimitriou, A. M. Origin of the Martian global dichotomy by crustal thinning in the late Noachian or early Hesperian. J. Geophys. Res. 95, 12595–12605 (1990).

    Article  ADS  Google Scholar 

  75. Garvin, J. B. & Frawley, J. J. Geometric properties of Martian impact craters: preliminary results from the Mars Orbiter Laser Altimeter. Geophys. Res. Lett. 25, 4405–4408 (1998).

    Article  ADS  Google Scholar 

  76. Sleep, N. H. Evolution of the mode of convection within terrestrial planets. J. Geophys. Res. 105, 17563–17578 (2000).

    Article  ADS  Google Scholar 

  77. Parmentier, E. M. & Zuber, M. T. Relaxation of crustal thickness variations on Mars: implications for thermal evolution. Lunar Planet. Sci. Conf. XXXII, Abstr. 1357 〈http://www.lpi.usra.edu/meetings/lpsc2001/pdf/1357.pdf〉 (2001).

  78. McGovern, P. J. et al. Gravity/topography admittances and lithospheric evolution of Mars: the importance of finite-amplitude topography. Lunar Planet. Sci. Conf. XXXII, Abstr. 1804 〈http://www.lpi.usra.edu/meetings/lpsc2001/pdf/1804.pdf〉 (2001).

  79. Schubert, G., Solomon, S. C., Turcotte, D. L., Drake, M. J. & Sleep, N. H. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 147–183 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  80. Grasset, O. & Parmentier, E. M. Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity: implications for planetary thermal evolution. J. Geophys. Res. 103, 18171–18181 (1998).

    Article  ADS  Google Scholar 

  81. Choblet, G., Grasset, O., Parmentier, E. M. & Sotin, C. Mars thermal evolution revisited. Lunar Planet. Sci. Conf. XXX, Abstr. 1556 〈http://www.lpi.usra.edu/meetings/LPSC99/pdf/1556.pdf〉 (1999).

  82. Spohn, T. Thermal histories of the terrestrial planets revisited. EOS Trans. Am. Geophys. Union 80, P32B-05 (1999).

    Google Scholar 

  83. Forsyth, D. W. Crustal thickness and the average depth and degree of melting in fractional melting models of passive flow beneath mid-ocean ridges. J. Geophys. Res. 98, 16073–16079 (1993).

    Article  ADS  Google Scholar 

  84. Banerdt, W. B., Phillips, R. J., Sleep, N. H. & Saunders, R. S. Thick shell tectonics on one-plate planets: applications to Mars. J. Geophys. Res. 87, 9723–9733 (1982).

    Article  ADS  Google Scholar 

  85. Banerdt, W. B., Golombek, M. P. & Tanaka, K. L. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 249–297 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  86. Bills, B. G. & Nerem, R. S. A harmonic analysis of Martian topography. J. Geophys. Res. 100, 26314–26326 (1995).

    ADS  Google Scholar 

  87. Harder, H. Mantle convection and the dynamic geoid of Mars. Geophys. Res. Lett. 27, 301–304 (2000).

    Article  ADS  Google Scholar 

  88. Anderson, R. C. & Golombek, M. P. Timing of Tharsis uplift from the distribution of tectonic structures. J. Geophys. Res. (in the press).

  89. Weinstein, S. A. The effects of a deep mantle endothermic phase transition. J. Geophys. Res. 100, 11719–11728 (1995).

    Article  ADS  Google Scholar 

  90. Harder, H. & Christensen, U. A one-plume model of Martian mantle convection. Nature 380, 507–509 (1996).

    Article  ADS  CAS  Google Scholar 

  91. Breuer, D., Zhou, H., Yuen, D. A. & Spohn, T. Phase transitions in the Martian mantle: implications for the planet's volcanic evolution. J. Geophys. Res. 101, 7531–7542 (1996).

    Article  ADS  Google Scholar 

  92. Breuer, D., Yuen, D. A. & Spohn, T. Phase transitions in the Martian mantle: implications for partially layered convection. Earth Planet. Sci. Lett. 148, 457–469 (1997).

    Article  ADS  CAS  Google Scholar 

  93. Breuer, D., Yuen, D. A., Spohn, T. & Zhang, S. Three-dimensional models of Martian mantle convection with phase transitions. Geophys. Res. Lett. 25, 229–232 (1998).

    Article  ADS  Google Scholar 

  94. Zhong, S. Long-wavelength topography and gravity anomalies of Mars and their implications to the formation of the Tharsis rise. Lunar Planet. Sci. Conf. XXXII, Abstr. 2124 〈http://www.lpi.usra.edu/meetings/lpsc2001/pdf/2124.pdf〉 (2001).

  95. King, S. D. & Ritsema, J. African hot spot volcanism: small-scale convection in the upper mantle beneath cratons. Science 290, 1137–1140 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  96. Wilhelms, D. E. & Squyres, S. W. The Martian hemispheric dichotomy may be due to a giant impact. Nature 309, 138–140 (1984).

    Article  ADS  Google Scholar 

  97. Frey, H. V. & Schultz, R. A. Large impact basins and the mega-impact origin for the crustal dichotomy on Mars. Geophys. Res. Lett. 15, 229–232 (1988).

    Article  ADS  Google Scholar 

  98. Lingenfelter, R. E. & Schubert, G. Evidence for convection in planetary interiors from first-order topography. Moon 7, 172–180 (1973).

    Article  ADS  Google Scholar 

  99. Wise, D. U., Golombek, M. P. & McGill, G. E. Tectonic evolution of Mars. J. Geophys. Res. 84, 7934–7939 (1979).

    Article  ADS  Google Scholar 

  100. Wise, D. U., Golombek, M. P. & McGill, G. E. Tharsis province of Mars: geologic sequence, geometry, and a deformation mechanism. Icarus 35, 456–472 (1979).

    Article  ADS  Google Scholar 

  101. McGill, G. E. & Squyres, S. W. Origin of the Martian crustal dichotomy: evaluating hypotheses. Icarus 93, 386–393 (1991).

    Article  ADS  Google Scholar 

  102. Zhong, S., Parmentier, E. M. & Zuber, M. T. On the dynamic origin and asymmetric distribution of mare basalts. Earth Planet. Sci. Lett. 177, 131–141 (2000).

    Article  ADS  CAS  Google Scholar 

  103. Schubert, G., Bercovici, D. & Glatzmaier, G. A. Mantle dynamics in Mars and Venus: influence of an immobile lithosphere on three-dimensional mantle convection. J. Geophys. Res. 94, 14105–14129 (1990).

    Article  ADS  Google Scholar 

  104. Nimmo, F. & Stevenson, D. J. Influence of early plate tectonics on the thermal evolution and magnetic field of Mars. J. Geophys. Res. 105, 11969–11979 (2000).

    Article  ADS  Google Scholar 

  105. Acuna, M. H. et al. Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science 284, 790–793 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  106. Connerney, J. E. P. et al. Magnetic lineations in the ancient crust of Mars. Science 284, 794–798 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  107. Purucker, M. et al. An altitude-normalized magnetic map of Mars and its interpretation. Geophys. Res. Lett. 27, 2449–2452 (2000).

    Article  ADS  CAS  Google Scholar 

  108. Langel, R. A., Phillips, J. D. & Horner, R. J. Initial vector magnetic anomaly map from MAGSAT. Geophys. Res. Lett. 9, 269–272 (1982).

    Article  ADS  Google Scholar 

  109. Acuna, M. H. et al. Results of the Mars Global Surveyor magnetic field investigation. J. Geophys. Res. (in the press).

  110. Dunlop, D. J. & Ozdemir, O. Rock Magnetism (Cambridge Univ. Press, Cambridge, 1997).

    Book  Google Scholar 

  111. Kletetschka, G., Wasilewski, P. J. & Taylor, P. T. Unique thermoremanent magnetization of multidomain sized hematite: implications for magnetic anomalies. Earth Planet. Sci. Lett. 176, 469–479 (2000).

    Article  ADS  CAS  Google Scholar 

  112. Kletetschka, G., Wasilewski, P. J. & Taylor, P. T. Mineralogy of the sources for magnetic anomalies on Mars. Meteoritics Planet. Sci. 35, 895–899 (2000).

    Article  ADS  CAS  Google Scholar 

  113. Christensen, P. C. et al. Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: evidence for near-surface water. J. Geophys. Res. 105, 9623–9642 (2000).

    Article  ADS  CAS  Google Scholar 

  114. Hargraves, R. B. et al. Magnetic enhancement on the surface of Mars? J. Geophys. Res. 105, 1819–1827 (2000).

    Article  ADS  CAS  Google Scholar 

  115. Cisowski, S. M. Magnetic studies on Shergotty and other SNC meteorites. Geochim. Cosmochim. Acta 50, 1043–1048 (1986).

    Article  ADS  CAS  Google Scholar 

  116. Weiss, B. P., Vali, H., Baudenbacher, F. J., Stewart, S. T. & Kirschvink, J. L. Records of an ancient Martian magnetic field. Nature (submitted).

  117. Schubert, G., Russell, C. T. & Moore, W. B. Timing of the Martian dynamo. Nature 408, 666–667 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  118. Lee, D.-C. & Halliday, A. N. Core formation on Mars and differentiated asteroids. Nature 388, 854–857 (1997).

    Article  ADS  CAS  Google Scholar 

  119. Hess, P. C. & Parmentier, E. M. Implications of magma ocean cumulate overturn for Mars. Lunar Planet. Sci. Conf. XXXII, Abstr. 1319 〈http://www.lpi.usra.edu/meetings/lpsc2001/pdf/1319.pdf〉 (2001).

  120. Blichert-Toft, J., Gleason, J. D., Telouk, P. & Albarede, F. The Lu-Hf isotope geochemistry of shergottites and the evolution of the Martian crust-mantle systems. Earth Planet. Sci. Lett. 173, 25–37 (1999).

    Article  ADS  CAS  Google Scholar 

  121. Neumann, G. A., Rowlands, D. S., Lemoine, F. G., Smith, D. E. & Zuber, M. T. The crossover analysis of MOLA altimetric data. J. Geophys. Res. (in the press).

  122. Zhong, S. & Zuber, M. T. Degree-1 mantle convection and the crustal dichotomy on Mars. Earth Planet. Sci. Lett. 189, 75–84 (2001).

    Article  ADS  CAS  Google Scholar 

  123. Tanaka, K. L. The stratigraphy of Mars. J. Geophys. Res. 91, E139–E158 (1986).

    Article  ADS  Google Scholar 

  124. Hartmann, W. K. & Neukum, G. Cratering chronology and the evolution of Mars. Space Sci. Rev. (in the press).

Download references

Acknowledgements

I thank G. Neumann and O. Aharonson for assistance with the crustal thickness inversion, H. McSween and W. Hartmann for providing material used in the figures, and J. Head, H. McSween and N. Sleep for helpful reviews. I also acknowledge helpful discussions with M. Parmentier, T. Grove, B. Weiss and members of the Mars Global Surveyor Laser Altimeter and Radio Science teams. This work was supported by the Mars Global Surveyor Project of the NASA Mars Exploration Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria T. Zuber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuber, M. The crust and mantle of Mars. Nature 412, 220–227 (2001). https://doi.org/10.1038/35084163

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35084163

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing