Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago

Abstract

No crustal rocks are known to have survived since the time of the intense meteor bombardment that affected Earth1 between its formation about 4,550 Myr ago and 4,030 Myr, the age of the oldest known components in the Acasta Gneiss of northwestern Canada2. But evidence of an even older crust is provided by detrital zircons in metamorphosed sediments at Mt Narryer3 and Jack Hills4,5,6,7,8 in the Narryer Gneiss Terrane9, Yilgarn Craton, Western Australia, where grains as old as 4,276 Myr have been found4. Here we report, based on a detailed micro-analytical study of Jack Hills zircons10, the discovery of a detrital zircon with an age as old as 4,404 ± 8 Myr—about 130 million years older than any previously identified on Earth. We found that the zircon is zoned with respect to rare earth elements and oxygen isotope ratios (δ18O values from 7.4 to 5.0‰), indicating that it formed from an evolving magmatic source. The evolved chemistry, high δ18O value and micro-inclusions of SiO2 are consistent with growth from a granitic melt11,2 with a δ18O value from 8.5 to 9.5‰. Magmatic oxygen isotope ratios in this range point toward the involvement of supracrustal material that has undergone low-temperature interaction with a liquid hydrosphere. This zircon thus represents the earliest evidence for continental crust and oceans on the Earth.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cathodoluminescence and back-scattered electron images of zircon crystal W74/2-36.
Figure 2: Combined concordia plot for grain W74/2-36, showing the U-Pb results obtained during the two analytical sessions.
Figure 3: Rare earth element data for Jack Hills zircon W74-2/36 measured by ion microprobe.

Similar content being viewed by others

References

  1. Ryder, G. Chronology of early bombardment in the inner solar system. Geol. Soc. Am. Abstr. Progm 21, A299 ( 1992).

    Google Scholar 

  2. Bowring, S A. & Williams, I. S. Priscoan (4.00–4.03) orthogneisses from northwestern Canada. Contrib. Mineral. Petrol. 134, 3–16 (1999).

    Article  ADS  CAS  Google Scholar 

  3. Froude, D. O. et al. Ion microprobe identification of 4,100–4,200 Myr-old terrestrial zircons. Nature 304, 616– 618 (1983).

    Article  ADS  CAS  Google Scholar 

  4. Compston, W. & Pidgeon, R. T. Jack Hills, evidence of more very old detrital zircons in Western Australia. Nature 321, 766–769 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Wilde, S. A. & Pidgeon, R. T. in 3rd International Archaean Symposium (Perth), Excursion Guidebook (eds Ho, S. E., Glover, J. E., Myers, J. S. & Muhling, J. R.) 82–95 (University of Western Australia Extension Publication, Vol. 21, Perth, 1990).

    Google Scholar 

  6. Kober, B., Pidgeon, R. T. & Lippolt, H. J. Single-zircon dating by step-wise Pb-evaporation constrains the Archean history of detrital zircons from the Jack Hills, Western Australia. Earth Planet. Sci. Lett. 91, 286–296 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Amelin, Y. V. Geochronology of the Jack Hills detrital zircons by precise U-Pb isotope dilution analysis of crystal fragments. Chem. Geol. 146, 25–38 (1998).

    Article  ADS  CAS  Google Scholar 

  8. Amelin, Y., Lee, D.-C., Halliday, A. N. & Pidgeon, R. T. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons. Nature 399, 252– 255 (1999).

    Article  ADS  CAS  Google Scholar 

  9. Myers, J. S. in Early Precambrian Processes (eds Coward, M. P. & Ries, A. C.) 143–154 (Geological Society of London Special Publication No. 95, 1995).

    Google Scholar 

  10. Peck, W. H., Valley, J. W., Wilde, S. A. & Graham, C. M. Oxygen isotope ratios and rare earth elements in 3.3 to >4.0 Ga zircons: ion microprobe evidence for Early Archaean high δ18O continental crust. Geochim. Cosmochim. Acta (submitted).

  11. Hinton, R. W. & Upton, B. G. J. The chemistry of zircon; variations within and between large crystals from syenite and alkali basalt xenoliths. Geochim. Cosmochim. Acta 55, 3287– 3302 (1991).

    Article  ADS  CAS  Google Scholar 

  12. Valley, J. W., Chiarenzelli, J. R. & McLelland, J. M. Oxygen isotope geochemistry of zircon. Earth Planet. Sci. Lett. 126, 187– 206 (1994).

    Article  ADS  CAS  Google Scholar 

  13. Maas, R., Kinny, P. D., Williams, I. S., Froude, D. O. & Compston, W. The earth's oldest known crust: a geochronological and geochemical study of 3900–4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochim. Cosmochim. Acta 56, 1281–1300 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Compston, W., Williams, I. S., Kirschvink, J. L., Zhang, Z. & Ma, G. Zircon U-Pb ages for the Early Cambrian time-scale. J. Geol. Soc. Lond. 149, 171– 184 (1992).

    Article  CAS  Google Scholar 

  15. Williams, I. S. in Applications of Microanalytical Techniques to Understanding Mineralizing Processes (eds McKibben, M. A., Shanks III, W. C. & Ridley, W. I.) 1–95 (Reviews in Economic Geology, Vol. 7, Society of Economic Geologists, Littleton, Colorado, 1998).

    Google Scholar 

  16. Nelson, D. R. Compilation of SHRIMP U-Pb geochronology data, 1996. Geol. Surv. Western Australia Rec. 1997/2, 1–11 (1997).

    Google Scholar 

  17. Taylor, S. R. Solar System Evolution: A New Perspective 289 (Cambridge Univ. Press, Cambridge, 1992).

    Google Scholar 

  18. Nelson, D. R., Robinson, B. W. & Myers, J. S. Complex geological histories extending from >4.0 Ga deciphered from xenocryst zircon microstructures. Earth Planet. Sci. Lett. 181, 89–102 ( 2000).

    Article  ADS  CAS  Google Scholar 

  19. Williams, I. S., Compston, W., Black, L. P., Ireland, T. R. & Foster, J. J. Unsupported radiogenic Pb in zircon: a cause of anomalously high Pb-Pb, U-Pb and Th-Pb ages. Contrib. Mineral. Petrol. 88, 322–327 (1984).

    Article  ADS  CAS  Google Scholar 

  20. Mattinson, J. M. A study of complex discordance in zircons using step-wise dissolution techniques. Contrib. Mineral. Petrol. 16, 117– 129 (1994).

    Article  ADS  Google Scholar 

  21. Valley, J. W., Kinny, P. D., Schulze, D. J. & Spicuzza, M. J. Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. Contrib. Mineral. Petrol. 133, 1– 11 (1998).

    Article  ADS  CAS  Google Scholar 

  22. King, E. M., Valley, J. W., Davis, D. W. & Edwards, G. R. Oxygen isotope ratios of Archean plutonic zircons from granite-greenstone belts of the Superior province: indicator of magmatic source. Precamb. Res. 92, 365–387 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Muehlenbachs, K. in Stable Isotopes (eds Valley, J. W. et al.) MSA Rev. Min. 16, 425–444 ( 1986).

    Google Scholar 

  24. Schopf, J. W. Microfossils in the early Archean Apex Chert: New evidence for the antiquity of life. Science 260, 640– 646 (1993).

    Article  ADS  CAS  Google Scholar 

  25. Hayes, J. M., Kaplan, I. R. & Wedeking, K. W. in Earth's Earliest Biosphere; its Origin and evolution 93–134 (Princeton Univ. Press, Princeton, NJ, 1983).

    Google Scholar 

  26. Pidgeon, R. T. et al. in Eighth Int. Conf. Geochron., Cosmochron. Isotope Geol. (eds Lanphere, M. A., Dalrymple, G. B. & Turrin, B. D.) 251 (US Geological Survey Circular 1107, Denver, Colorado, 1994).

    Google Scholar 

  27. Claoué-Long, J. C., Compston, W., Roberts, J. & Fanning, C. M. in Geochronology, Time Scales and Global Stratigraphic Correlation (eds Berggren, W. A., Kent, D. V., Aubry, M.-P. & Hardenbol, J.) 3– 21 (Soc. of Sedimentary Geology, SEPM Sp. Publ. 4, 1995).

    Book  Google Scholar 

  28. Valley, J. W., Graham, C. M., Harte, B., Eiler, J. M. & Kinny, P. D. in Applications of Microanalysis to Understanding Mineralizing Processes (eds McKibben, M. A., Shanks III, W. C. & Ridley, W. I.) 73–98 ( xReviews in Economic Geology, Vol. 7, Society of Economic Geologists, Littleton, Colorado, 1998).

    Google Scholar 

  29. Eiler, J. M., Graham, C. M. & Valley, J. W. SIMS analysis of oxygen isotopes: matrix effects in complex minerals and glasses. Chem. Geol. 138, 221–244 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Nemchin for assistance with the cathodoluminescence imaging, J. Craven for assistance in stable isotope analysis by ion microprobe and J. Fournelle for assistance with electron microprobe analysis. Initial fieldwork was supported by the Australian Research Council and analytical work by NERC, NSF and the US Department of Energy. D. Nelson and K. McNamara kindly commented on the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilde, S., Valley, J., Peck, W. et al. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–178 (2001). https://doi.org/10.1038/35051550

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35051550

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing