Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Unicellular C4 photosynthesis in a marine diatom

Abstract

Nearly 50 years ago, inorganic carbon was shown to be fixed in microalgae as the C3 compound phosphoglyceric acid1. The enzyme responsible for C3 carbon fixation, ribulose-1,5-bisphosphate carboxylase (Rubisco), however, requires inorganic carbon in the form of CO2 (ref. 2), and Rubisco enzymes from diatoms have half-saturation constants for CO2 of 30–60 µM (ref. 3). As a result, diatoms growing in seawater that contains about 10 µM CO2 may be CO2 limited4. Kinetic and growth studies have shown that diatoms can avoid CO2 limitation5,6,7, but the biochemistry of the underlying mechanisms remains unknown. Here we present evidence that C4 photosynthesis supports carbon assimilation in the marine diatom Thalassiosira weissflogii, thus providing a biochemical explanation for CO2-insensitive photosynthesis in marine diatoms. If C4 photosynthesis is common among marine diatoms, it may account for a significant portion of carbon fixation and export in the ocean, and would explain the greater enrichment of 13C in diatoms compared with other classes of phytoplankton. Unicellular C4 carbon assimilation may have predated the appearance of multicellular C4 plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phosphoenolpyruvate carboxylase (PEPCase) activities (squares) and growth rates (+) in the marine diatom T. weissflogii.
Figure 2: Short-term 14C assimilation in the marine diatom T. weissflogii.
Figure 3: Transfer of 14C from malate to C3 compounds (PGA and sugars) in the marine diatom T. weissflogii.

Similar content being viewed by others

References

  1. Calvin, M. et al. Carbon dioxide assimilation in plants. Symp. Soc. Exp. Biol. 5, 284–305 ( 1951).

    CAS  Google Scholar 

  2. Cooper, T. G., Filmer, D., Wishnick, M. & Lane, M. D. The active species of “CO2” utilized by ribulose diphosphate carboxylase. J. Biol. Chem. 244, 1081– 1083 (1969).

    CAS  PubMed  Google Scholar 

  3. Badger, M. R. et al. The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Can. J. Bot. 76, 1052–1071 (1998).

    CAS  Google Scholar 

  4. Riebesell, U., Wolf-Gladrow, D. A. & Smetacek, V. S. Carbon dioxide limitation of marine phytoplankton growth rates. Nature 361, 249– 251 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Colman, B. & Rotatore, C. Photosynthetic inorganic carbon uptake and accumulation in two marine diatoms. Plant Cell Envir. 18, 919–924 ( 1995).

    Article  CAS  Google Scholar 

  6. Korb, R. E., Saville, P. J., Johnston, A. M. & Raven, J. A. Sources of inorganic carbon for photosynthesis by three species of marine diatom. J. Phycol. 33, 433– 440 (1997).

    Article  CAS  Google Scholar 

  7. Tortell, P. D., Reinfelder, J. R. & Morel, F. M. M. Active uptake of bicarbonate by diatoms. Nature 390, 243–244 ( 1997).

    Article  ADS  CAS  Google Scholar 

  8. Morris, I. in Primary Productivity in the Sea (ed. Falkowski, P. G.) 139– 159 (Plenum, New York, 1980).

    Book  Google Scholar 

  9. Mortain-Bertrand, A., Descolas-Gros, C. & Jupin, H. Short-term 14C incorporation in Skeletonema costatum (Greville) Cleve (Bacillariophyceae) as a function of light regime. Phycologia 26, 262–269 (1987).

    Article  CAS  Google Scholar 

  10. Falkowski, P. G. & Raven, J. A. Aquatic Photosynthesis (Blackwell, Malden, 1997).

    Google Scholar 

  11. Cooper, T. G. & Wood, H. G. The carboxylation of phosphoenolpyruvate and pyruvate. J. Biol. Chem. 246, 5488– 5490 (1971).

    CAS  PubMed  Google Scholar 

  12. Ausenhus, S. L. & O'Leary, M. H. Hydrolysis of phosphoenolpyruvate catalysed by phophoenolpyruvate carboxylase from Zea mays. Biochem. 31, 6427– 6431 (1992).

    Article  CAS  Google Scholar 

  13. Hatch, M. D. C4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. Biochim. Biophys. Acta 895, 81–106 (1987).

    Article  CAS  Google Scholar 

  14. Morel, F. M. M. et al. Zinc and carbon co-limitation of marine phytoplankton. Nature 369, 740–742 ( 1994).

    Article  ADS  CAS  Google Scholar 

  15. Lane, T. W. & Morel, F. M. M. Regulation of carbonic anhydrase expression by Zn, Co, and CO2 in the marine diatom Thalassiosira weissflogii. Plant Physiol. 123, 345 –352 (2000).

    Article  CAS  Google Scholar 

  16. Hatch, M. D. & Burnell, J. N. Carbonic anhydrase activity in leaves and its role in the first step of C4 photosynthesis. Plant Physiol. 93, 825–828 (1990).

    Article  CAS  Google Scholar 

  17. Slack, C. R., Hatch, M. D. & Goodchild, D. J. Distribution of enzymes in mesophyll and parenchyma-sheath chloroplasts of maize leaves in relation to the C4-dicarboxylic acid pathway of photosynthesis. Biochem. J. 114, 489–498 (1969).

    Article  CAS  Google Scholar 

  18. Magnin, N. C., Cooley, B. A., Reiskind, J. B. & Bowes, G. Regulation and localization of key enzymes during the induction of Kranz-less, C4-type photosynthesis in Hydrilla verticillata. Plant Physiol. 115, 1681–1689 (1997).

    Article  CAS  Google Scholar 

  19. Boyd, P. & Newton, P. Evidence of the potential influence of planktonic community structure on the interannual variability of particulate organic carbon flux. Deep-Sea Res. 42, 619 –639 (1995).

    Article  Google Scholar 

  20. Fry, B. & Wainright, S. C. Diatom sources of 13C-rich carbon in marine food webs. Mar. Ecol. Prog. Ser. 76, 149–157 ( 1991).

    Article  ADS  Google Scholar 

  21. Hayes, J. M., Strauss, H. & Kaufman, A. J. The abundance of C-13 in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem. Geol. 161, 103– 125 (1999).

    Article  ADS  CAS  Google Scholar 

  22. Medlin, L. K., Kooistra, W. H. C. F., Gersonde, R., Sims, P. A. & Wellbrock, U. Is the origin of the diatoms related to the end-permian mass extinction? Nova Hedwigia. 65, 1–11 (1997).

    Google Scholar 

  23. Berner, R. A. Atmospheric carbon dioxide levels over phanerozoic time. Science 249, 1382–1386 ( 1990).

    Article  ADS  CAS  Google Scholar 

  24. Ehleringer, J. R. & Monson, R. K. Evolutionary and ecological aspects of photosynthetic pathway variation. Annu. Rev. Ecol. Syst. 24, 411–439 (1993).

    Article  Google Scholar 

  25. Price, N. M. et al. Preparation and chemistry of the artificial algal culture medium Aquil. Biol. Oceanogr. 6, 443– 461 (1988/89).

    Google Scholar 

  26. Wilbur, K. M. & Anderson, N. G. Electrometric and colourimetric determination of carbonic anhydrase. J. Biol. Chem. 176, 147–154 (1948).

    CAS  PubMed  Google Scholar 

  27. Streamer, M., McNell, Y. R. & Yellowlees, D. Photosynthetic carbon dioxide fixation in zooxanthellae. Mar. Biol. 115, 195–198 (1993).

    Article  CAS  Google Scholar 

  28. O'Leary, M. H., Rife, J. E. & Slater, J. D. Kinetic and isotopic effect studies of maize phosphenolpyruvate carboxylase. Biochem. 20, 7308– 7314 (1981).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank M. Spring for help with the enzyme analyses; S.I. Chang, C.-W. Fan; and P.D. Tortell for help with the pulse-chase experiments; I. Schaperdoth for help with the cell fractionation; and T. Lane and K. Keller for useful comments. Funding from the Center for Environmental Bioinorganic Chemistry supported by NSF and DOE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Reinfelder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reinfelder, J., Kraepiel, A. & Morel, F. Unicellular C4 photosynthesis in a marine diatom. Nature 407, 996–999 (2000). https://doi.org/10.1038/35039612

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35039612

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing