Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes

Abstract

Mycorrhizae, the symbiotic associations of plant roots and fungal hyphae, are classic examples of mutualisms. In these ecologically important associations, the fungi derive photosynthetic sugars from their plant hosts, which in turn benefit from fungus-mediated uptake of mineral nutrients. Early views on the evolution of symbioses suggested that all long-term, intimate associations tend to evolve toward mutualism. Following this principle, it has been suggested that mycorrhizal symbioses are the stable derivatives of ancestral antagonistic interactions involving plant parasitic fungi1. Alternatively, mutualisms have been interpreted as inherently unstable reciprocal parasitisms, which can be disrupted by conflicts of interest among the partners2,3,4,5. To determine the number of origins of mycorrhizae, and to assess their evolutionary stability, it is necessary to understand the phylogenetic relationships of the taxa involved. Here we present a broad phylogenetic analysis of mycorrhizal and free-living homobasidiomycetes (mushroom-forming fungi). Our results indicate that mycorrhizal symbionts with diverse plant hosts have evolved repeatedly from saprotrophic precursors, but also that there have been multiple reversals to a free-living condition. These findings suggest that mycorrhizae are unstable, evolutionarily dynamic associations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phylogeny of homobasidiomycetes and evolution of ectomycorrhizal symbioses inferred from rDNA sequences.

Similar content being viewed by others

References

  1. Price, P. W. in Symbiosis As A Source Of Evolutionary Adaptation (eds Margulis, L. & Fester, R.) 262–272 (MIT Press, Cambridge, MA, 1991).

    Google Scholar 

  2. Bronstein, J. L. Conditional outcomes in mutualistic interactions. Trends Ecol. Evol. 9, 214–217 ( 1994).

    Article  CAS  Google Scholar 

  3. Thompson, J. N. The Coevolutionary Process (Univ. Chicago Press, Chicago, 1994).

    Book  Google Scholar 

  4. Herre, E. A., Knowlton, N., Mueller, U. G. & Rehner, S. A. The evolution of mutualisms: exploring the paths between conflict and cooperation. Trends Ecol. Evol. 14, 49– 53 (1999).

    Article  CAS  Google Scholar 

  5. Pellmyr, O. & Huth, C. J. Evolutionary stability of mutualism between yuccas and yucca moths. Nature 372, 257–260 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Pirozynski, K. A. & Malloch, D. W. The origin of land plants: a matter of mycotrophism. Biosystems 6, 153–164 (1975).

    Article  CAS  Google Scholar 

  7. Malloch, D. W., Pirozynski, K. A. & Raven, P. H. Ecological and evolutionary significance of mycorrhizal symbioses in vascular plants (a review). Proc. Natl Acad. Sci. USA 77, 2113–2118 ( 1980).

    Article  ADS  CAS  Google Scholar 

  8. Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis 2nd edn (Academic, San Diego, 1997).

    Google Scholar 

  9. Hawksworth, D. L., Kirk, P. M., Sutton, B. C. & Pegler, D. N. Dictionary Of The Fungi 8th edn (CAB International, Wallingford,, 1996).

    Google Scholar 

  10. Swofford, D. L. PAUP* 4. 0b2a (Sinauer, Sunderland, 1999).

    Google Scholar 

  11. Maddison, W. P. & Maddison, D. R. MacClade version 3 (Sinauer, Sunderland, 1992).

    Google Scholar 

  12. Pagel, M. The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Syst. Biol. 48, 612–622 (1999).

    Article  Google Scholar 

  13. Fitter, A. H. & Moyersoen, B. Evolutionary trends in root-microbe symbioses. Philos. Trans. R. Soc. (Ser. 351) 1345, 1367–1375 (1996).

    Google Scholar 

  14. Trappe, J. M. Fungus associates of ectotrophic mycorrhizae. Bot. Rev. 28, 538–606 (1962).

    Article  Google Scholar 

  15. Ashton, D. H. Studies on the mycorrhizae of Eucalyptus regnans F. Muell. Aust. J. Bot. 24, 723–741 (1976).

    Article  Google Scholar 

  16. Malajczuk, N., Molina, R. & Trappe, J. M. Ectomycorrhiza formation in Eucalyptus. I. Pure culture syntheses, host specificity and mycorrhizal compatibility with Pinus radiata. New Phytol. 91, 467– 482 (1982).

    Article  Google Scholar 

  17. Smits, W. T. M. Dipterocarpaceae: Mycorrhizae and regeneration (Tropenbos Foundation, Wageningen, 1994).

    Google Scholar 

  18. Nuhamara, S. T., Hadi, S. & Bimaatmadja, E. I. in Proceedings of the 6th North American Conference on Mycorrhizae (ed. Molina, R.) 439 (Forest Research Laboratory, Oregon State Univ., 1985).

    Google Scholar 

  19. Danielson, R. M. Ectomycorrhizal associations in jack pine stands in north-eastern Alberta. Can. J. Bot. 62, 932–939 (1984).

    Article  Google Scholar 

  20. Molina, R. & Trappe, J. M. Patterns of ectomycorrhizal host specificity and potential among pacific northwest conifers and fungi. Forest Sci. 28, 423–458 (1982).

    Google Scholar 

  21. Kropp, B. R. & Trappe, J. M. Ectomycorrhizal fungi of Tsuga heterophylla. Mycologia 74, 479– 488 (1982).

    Article  Google Scholar 

  22. Bruns, T. D. Thoughts on the processes that maintain local species diversity of ectomycorrhizal fungi. Plant Soil 170, 63– 73 (1995).

    Article  CAS  Google Scholar 

  23. Hibbett, D. S. & Thorn, R. G. in The Mycota Vol. VII Systematics and Evolution (eds McLaughlin, D. J., McLaughlin, E. G. & Lemke, P. A.) (Springer, in the press).

  24. Cooke, R. C. & Rayner, A. D. M. Ecology of Saprotrophic Fungi (Longman, New York, 1984).

    Google Scholar 

  25. Leake, J. R. & Read, D. J. in The Mycota Vol. IV Environmental and Microbial Relationships (eds Wicklow, D. T. & Söderström, B. E.) 281–301 (Springer, Berlin, 1997).

    Google Scholar 

  26. Pellmyr, O., Leebens-Mack, J. & Huth, C. J. Non-mutualistic yucca moths and their evolutionary consequences. Nature 380, 155– 156 (1996).

    Article  ADS  CAS  Google Scholar 

  27. Clay, K. in Coevolution of Fungi with Plants and Animals (eds Pirozynski, K. A. & Hawksworth, D. L.) 79–105 (Academic, San Diego, 1988).

    Google Scholar 

  28. Lamb, R. J. Effect of D-glucose on utilization of single carbon sources by ectomycorrhizal fungi. Trans. Br. Mycol. Soc. 63, 295– 306 (1974).

    Article  Google Scholar 

  29. Swann, E. C. & Taylor, J. W. Higher taxa of basidiomycetes: an 18S rRNA perspective. Mycologia 85, 923 –936 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Pagel for providing a copy of Discrete; USDA, DAOM and other sources for fungal samples; J.-M. Moncalvo and R. Vilgalys for access to unpublished sequences; and J. Bronstein for helpful comments. This work was supported by grants from the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Hibbett.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hibbett, D., Gilbert, LB. & Donoghue, M. Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes . Nature 407, 506–508 (2000). https://doi.org/10.1038/35035065

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35035065

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing