Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of ovalbumin as a model for the reactive centre of serpins

Abstract

THE serpins are a widely distributed family of proteins with diverse functions; they include the key serine protease inhibitors of human plasma as well as noninhibitory homologues such as hormone-binding globulins, angiotensinogen and egg-white ovalbumin1. Sequence alignment based on the crystal structure of the cleaved form of the archetypal serpin, a α1-antitrypsin2, indicates that the serpins share a common highly ordered structure3. On cleavage of the reactive centre peptide bond, they characteristically undergo a remarkable conformational change, the newly generated C ter-minus moving some 70 Å to the opposite pole of the molecule. The structure of this post-cleavage form is known, but the conformation of the intact serpins and in particular that of their reactive centre is not. Wright et al.'s structure of plakalbumin4 (ovalbumin cleaved by subtilisin) has provided evidence for the conformational change that results from cleavage. We have now determined the structure of native ovalbumin to 1.95 Å resolution and have found that the intact peptide loop forming the analogue to the reactive centre of the inhibitory serpins takes the unexpected form of a protruding, isolated helix. This model of the intact structures of the serpins suggests how they may interact with their target proteases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hunt, L. T. & Dayhoff, M. O. Biochem. biophys. Res. Commun. 95, 864–871 (1980).

    Article  CAS  Google Scholar 

  2. Löebermann, H., Tokuoka, R., Deisenhofer, J. & Huber, R. J. molec. Biol. 177, 531–556 (1984).

    Article  Google Scholar 

  3. Huber, R. & Carrell, R. W. Biochemistry 28, 8951–8966 (1989).

    Article  CAS  Google Scholar 

  4. Wright, H. T., Qian, H. X. & Huber, R. J. molec. Biol. 213, 513–518 (1990).

    Article  CAS  Google Scholar 

  5. Carrell, R. W. & Owen, M. C. Nature 317, 730–732 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Pemberton, P. A., Stein, P. E., Pepys, M. B., Potter, J. M. & Carrell, R. W. Nature 336, 257–258 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Gettins, P. J. biol. Chem. 264, 3781–3785 (1989).

    CAS  PubMed  Google Scholar 

  8. Stein, P. E., Tewkesbury, D. A. & Carrell, R. W. Biochem. J. 262, 103–107 (1989).

    Article  CAS  Google Scholar 

  9. Linderstrøm-Lang, K. & Ottesen, M. C. r. Trav. Lab. Carlsberg 26, 403–442 (1949).

    Google Scholar 

  10. Wright, H. T. J. biol. Chem. 259, 14335–14336 (l984).

    Google Scholar 

  11. Perry, D. J. & Carrell, R. W. Molec. Biol. Med. 6, 239–243 (1989).

    CAS  PubMed  Google Scholar 

  12. Levy, N. X., Ramesh, N., Cicardi, M., Harrison, R. A. & Davis, A. E. Proc. natn. Acad. Sci. U.S.A. 87, 265–268 (1990).

    Article  ADS  CAS  Google Scholar 

  13. McPhalen, C. A. & James, M. N. G. Biochemistry 26, 261–269 (1987).

    Article  CAS  Google Scholar 

  14. Bode, W., Papamokos, E., Musil, D., Seemueller, U. & Fritz, H. EMBO J. 5, 813–818 (1986).

    Article  CAS  Google Scholar 

  15. Ptitsyn, O. B. Pure Appl. Chem. 31, 227–244 (1972).

    Article  CAS  Google Scholar 

  16. Warner, R. C. in The Proteins Vol. 2a (eds Neurath, H. & Bailey, K.) 435–485 (Academic, New York, 1954).

    Book  Google Scholar 

  17. Goux, W. J. & Venkatasoubramanian, P. N. Biochemistry 25, 84–94 (1986).

    Article  CAS  Google Scholar 

  18. Miller, M., Weinstein, J. N. & Wlodawer, A. J. biol. Chem. 258, 5864–5866 (1983).

    CAS  PubMed  Google Scholar 

  19. Sussmann, J. L., Holbrook, S. R., Church, G. M. & Kim, S.-H. Acta crystallogr. A33, 800–804 (1977).

    Article  Google Scholar 

  20. Brünger, A. T., Kuriyan, J. & Karplus, M. Science 235, 458–460 (1987).

    Article  ADS  Google Scholar 

  21. Hendrickson, W. A. & Konnert, J. H. in Computing in Crystallography (eds Diamond, R., Ramaseshan, S. & Venkatesan, K.) 13.01–13.23 (Indian Institute of Science, Bangalore, 1980).

    Google Scholar 

  22. Jones, T. A., J. appl. Crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stein, P., Leslie, A., Finch, J. et al. Crystal structure of ovalbumin as a model for the reactive centre of serpins. Nature 347, 99–102 (1990). https://doi.org/10.1038/347099a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347099a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing