Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Universality in colloid aggregation

Abstract

THE aggregation of colloidal particles is of fundamental importance in colloid science and its applications. The recent application of scaling concepts1,2 has resulted in a much deeper understanding of the structure of colloidal aggregates and the kinetics of their formation. Two distinct, limiting regimes of irreversible colloid aggregation have been identified3. Diffusion-limited colloid aggregation occurs when there is negligible repulsive force between the colloidal particles, so that the aggregation rate is limited solely by the time taken for clusters to encounter each other by diffusion. Reaction-limited colloid aggregation occurs when there is still a substantial, but not insurmountable, repulsive force beween the particles, so that the aggregation rate is limited by the time taken for two clusters to overcome this repulsive barrier by thermal activation. These regimes correspond to the limiting cases of rapid and slow colloid aggregation that have long been recognized in colloid science4. An intriguing possibility suggested by recent work is that each of these limiting regimes of colloid aggregation is universal, independent of the chemical details of the particular colloid system. Here we investigate the aggregation of three chemically different colloidal systems under both diffusion-limited and reaction-limited aggregation conditions. A scaling analysis of light-scattering data is used to compare the behaviour and provides convincing experimental evidence that the two regimes of aggregation are indeed universal.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Meakin, P. in Phase Transitions (ed. Liebowitz, J. L.) 12, 335 (Academic, New York, 1988).

    Google Scholar 

  2. Jullien, R. & Botet, R. Aggregation and Fractal Aggregates (World Scientific, Singapore, 1987).

    MATH  Google Scholar 

  3. Weitz, D. A., Huang, J. S., Lin, M. Y. & Sung, J. Phys. Rev. Lett 54, 1416–1419 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Verwey, E. J. W. & Overbeek, J. T. G. Theory of the Stability of Lyophoblc Colloids (Elsevier, Amsterdam, 1948).

    Google Scholar 

  5. Cohen, R. J. & Benedek, G. B. J. phys. Chem. 86, 3696–3714 (1982).

    Article  CAS  Google Scholar 

  6. Vicsek, T. & Family, F. Phys. Rev. Lett. 52, 1669–1672 (1984).

    Article  ADS  Google Scholar 

  7. Van Dongen, G. J. & Ernst, M. H. Phys. Rev. Lett. 54, 1396–1399 (1985).

    Article  ADS  CAS  Google Scholar 

  8. Ball, R. C., Weitz, D. A., Witten, T. A. & Leyvraz, F. Phys. Rev. Lett. 58, 274–277 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Meakin, P. Phys. Rev. Lett. 51, 1119–1122 (1983).

    Article  ADS  Google Scholar 

  10. Kolb, M., Botet, R. & Jullien, R. Phys. Rev. Lett. 51, 1123–1126 (1983).

    Article  ADS  Google Scholar 

  11. Brown, W. D. & Ball, R. C. J. Phys. A18, L517–L519 (1985).

    ADS  CAS  Google Scholar 

  12. Mountain, R. D. & Mulholland, G. W. Langmuir 4, 1321–1326 (1988).

    Article  CAS  Google Scholar 

  13. Meakin, P., Vicsek, T. & Family, F. Phys. Rev. B31, 564–569 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Meakin, P. & Family, F. Phys. Rev. A36, 5498–5501 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Von Schultess, G. K., Benedek, G. B. & De Blois, R. W. Macromolecules 13, 939–945 (1980).

    Article  ADS  Google Scholar 

  16. Weitz, D. A. & Oliveria, M. Phys. Rev. Lett. 52, 1433–1436 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Schaefer, D. W., Martin, J. E., Wiltzius, P. & Cannell, D. S. Phys. Rev. Lett. 52, 2371–2374 (1984).

    Article  ADS  CAS  Google Scholar 

  18. Matsushita, M., Hayakawa, Y., Sumida, K. & Sawada, Y. in Science on Form: Proceedings of the First International Conference for Science on Form (ed. Kato, Y., Takaki, R. & Toriwaki, J.) (KTK Scientific Publishers, Tokyo, 1986).

    Google Scholar 

  19. Aubert, C. & Cannell, D. S. Phys. Rev. Lett. 56 738–741 (1986).

    Article  ADS  CAS  Google Scholar 

  20. Weitz, D. A. & Lin, M. Y. Phys. Rev. Lett. 57, 2037–2040 (1986).

    Article  ADS  CAS  Google Scholar 

  21. Martin, J. E. Phys. Rev. A36, 3415–3426 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Lindsay, H. M., Klein, R., Weitz, D. A., Lin, M. Y. & Meakin, P. Phys. Rev. A38, 2614–2626 (1988).

    Article  ADS  CAS  Google Scholar 

  23. Chen, Z.-Y., Deutch, J. M. & Meakin, P. J. chem. Phys. 80, 2982–2983 (1984).

    Article  ADS  CAS  Google Scholar 

  24. Hess, W., Frisch, H. L. & Klein, R. Z. Phys. B64, 65–68 (1986).

    Article  CAS  Google Scholar 

  25. Wiltzius, P. Phys. Rev. Lett. 58, 710–713 (1987).

    Article  ADS  CAS  Google Scholar 

  26. Lin, M. Y. et al. Proc. R. Soc. Lond. A (in the press).

  27. Rarity, J. G., Seabrook, R. N. & Carr, R. G., Proc. Roy. Soc. Lond. A (in the press).

  28. Buscall, R., Mills, P. D. A., Goodwin, J. W. & Lawson, D. W. J. chem. Soc. Faraday Trans. 1, 4249–4260 (1988).

    Article  Google Scholar 

  29. Feder, J., Jossang, T. & Rosenqvist, E. Phys. Rev. Lett. 53, 1403 (1984).

    Article  ADS  CAS  Google Scholar 

  30. Horne, D. S. Faraday Discuss. chem. Soc. 83, 259–270 (1987).

    Article  CAS  Google Scholar 

  31. Wilcoxon, J. P., Martin, J. E. & Schaefer, D. W. Phys. Rev. A 39, 2675–2688 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, M., Lindsay, H., Weitz, D. et al. Universality in colloid aggregation. Nature 339, 360–362 (1989). https://doi.org/10.1038/339360a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/339360a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing