Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties

Abstract

A FUNDAMENTAL step in visual pattern recognition is the establishment of relations between spatially separate features. Recently, we have shown that neurons in the cat visual cortex have oscillatory responses in the range 40–60 Hz (refs 1,2) which occur in synchrony for cells in a functional column and are tightly correlated with a local oscillatory field potential. This led us to hypothesize that the synchronization of oscillatory responses of spatially distributed, feature selective cells might be a way to establish relations between features in different parts of the visual field2,3. In support of this hypothesis, we demonstrate here that neurons in spatially separate columns can synchronize their oscillatory responses. The synchronization has, on average, no phase difference, depends on the spatial separation and the orientation preference of the cells and is influenced by global stimulus properties.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gray, C. M. & Singer, W. Soc. Neumsci. Abstr. 404, 3 (1987).

    Google Scholar 

  2. Gray, C. M. & Singer, W. Proc. natn. Acad. Sci. U.S.A. (in the press).

  3. von der Malsburg, C. & Singer, W. in Neurobiology of Neocortex (Proceedings of the Dahlem Conference) 69–99 (eds Rakiç, P. & Singer, W.) (Wiley, Chichester, 1988).

    Google Scholar 

  4. Perkel, D. H., Gerstein, G. L. & Moore, G. P. Biophys. J. 7, 391–418 (1967).

    Article  CAS  Google Scholar 

  5. Perkel, D. H., Gerstein, G. L. & Moore, G. P. Biophys. J. 7, 419–440 (1967).

    Article  CAS  Google Scholar 

  6. Tso, D., Gilbert, C. D. & Wiesel, T. N. J. Neurosci. 6, 1160–1170 (1986).

    Article  CAS  Google Scholar 

  7. Toyama, K., Kimura, M. & Tanaka, K. J. Neurophys. 46, 191–201 (1981).

    Article  CAS  Google Scholar 

  8. Toyama, K., Kimura, M. & Tanaka, K. J. Neurophys. 46, 202–213 (1981).

    Article  CAS  Google Scholar 

  9. Michalski, A., Gerstein, G. L., Czarkowska, J. & Tarnecki, R. Expl Brain Res. 51, 97–107 (1983).

    Article  CAS  Google Scholar 

  10. Aiple, F. & Krüger, J. Expl Brain Res. 72, 141–149 (1988).

    Article  CAS  Google Scholar 

  11. Krüger, J. Rev. Physiol. Biochem. Pharmac. 98, 177–233 (1983).

    Article  Google Scholar 

  12. Hata, Y., Tsumoto, T., Sato, H., Hagihara, K. & Tamura, H. Nature 335, 815–817 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Creutzfeldt, O. D., Garey, L. J., Kuroda, R. & Wolff, J.-R. Expl Brain Res. 27, 419–440 (1977).

    CAS  Google Scholar 

  14. Gilbert, C. D. & Wiesel, T. N. Nature 280, 120–125 (1979).

    Article  ADS  CAS  Google Scholar 

  15. Rockland, K. S. & Lund, J. Science 215, 1532–1534 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Mitchison, G. & Crick, F. Proc. natn. Acad. Sci. U.S.A. 79, 3661–3665 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Gilbert, C. D. & Wiesel, T. N. J. Neumsci. 3, 1116–1133 (1983).

    Article  CAS  Google Scholar 

  18. Martin, K. A. C. & Whitteridge, D. J. Physiol. 353, 463–504 (1984).

    Article  CAS  Google Scholar 

  19. Kisvarday, Z. F. et al. Expl Brain Res. 64, 541–552 (1986).

    Article  CAS  Google Scholar 

  20. Montero, V. M. Brain Behav. Evol. 18, 194–218 (1981).

    Article  CAS  Google Scholar 

  21. Barlow, H. B. Proc. R. Soc. B212, 1–34 (1981).

    ADS  Google Scholar 

  22. Marr, D. & Poggio, T. Science 194, 283–287 (1976).

    Article  ADS  CAS  Google Scholar 

  23. Julesz, B. Nature 290, 91–97 (1981).

    Article  ADS  CAS  Google Scholar 

  24. Ballard, D. H., Hinton, G. E. & Sejnowski, T. J. Nature 306, 21–26 (1983).

    Article  ADS  CAS  Google Scholar 

  25. von der Malsburg, C. & Schneider, W. Biol. Cybern 54, 29–40 (1986).

    Article  CAS  Google Scholar 

  26. Nelson, J. I. in Models of the Visual Cortex (eds Rose, D. & Dobson, V. G.) 108–122 (Wiley, Chichester, 1985).

    Google Scholar 

  27. Gray, C. M. & Singer, W. Eur. J. Neumsci. Suppl. 1, 86.4 (1988).

  28. Singer, W., Gray, C. M., Engel, A. & König, P. Soc. Neurosci. Abstr. 14, 362.13 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gray, C., König, P., Engel, A. et al. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338, 334–337 (1989). https://doi.org/10.1038/338334a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/338334a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing