Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ionic basis of membrane potential in outer hair cells of guinea pig cochlea

Abstract

Mammalian hearing involves features not found in other species, for example,the separation of sound frequencies depends on an active control of the cochlear mechanics1,2.The force-generating component in the cochlea is likely to be the outer hair cell(OHC), one of the two types of sensory cell through which current is gated by mechano-electrical transducer channels sited on the apical surface3.Outer hair cells isolated in vitro have been shown to be motile4,5 and capable of generating forces at acoustic frequencies6. The OHC membrane is not, however, electrically tuned, as found in lower vertebrates7–9. Here we describe how the OHC resting potential is determined by a Ca2+-activated K+ conductance10,11 at the base of the cell. Two channel types with unitary sizes of 240 and 45 pS underlie this Ca2+-activated K+ conductance and we suggest that their activity is determined by a Ca2+ influx through the apical transducer channel, as demonstrated in other hair cells12. This coupled system simultaneously explains the large OHC resting potentials observed in vivo13,14 and indicates how the current gated by the transducer may be maximized to generate the forces required in cochlear micromechanics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brown, M. C. & Nuttall, A. L. J. Physiol., Lond. 354, 625–646 (1984).

    Article  CAS  Google Scholar 

  2. Davis, H. Hearing Res. 9, 79–90 (1983).

    Article  ADS  CAS  Google Scholar 

  3. Pickles, J. O. Prog. Neurobiol. 24, 1–42 (1985).

    Article  CAS  Google Scholar 

  4. Ashmore, J. F. J. Physiol., Lond. 364, 4P (1985).

    Google Scholar 

  5. Brownell, W. E., Bader, C. R., Bertrand, D. & de Ribaupierre, Y. Science 227, 194–196 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Ashmore, J. F. & Brownell, W. E. J. Physiol., Lond. (in the press).

  7. Lewis, R. S. & Hudspeth, A. J. Nature 304, 538–541 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Ashmore, J. F. & Pitchford, S. J. Physiol., Lond. 364, 39P (1985).

    Google Scholar 

  9. Crawford, A. C. & Fettiplace, R. J. Physiol., Lond. 312, 377–412 (1981).

    Article  CAS  Google Scholar 

  10. Meech, R. W. Comp. Biochem. Physiol. 42A, 493–499 (1972).

    Article  Google Scholar 

  11. Meech, R. W. & Standen, N. B. J. Physiol., Lond. 249, 211–239 (1975).

    Article  CAS  Google Scholar 

  12. Ohmori, H. J. Physiol., Lond. 359, 189–218 (1985).

    Article  CAS  Google Scholar 

  13. Cody, A. R. & Russell, I. J. Nature 315, 662–665 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Dallos, P., Santos-Sacchi, J. & Flock, A. Science 218, 582–584 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers. Arch. ges. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  16. Russell, I. J. Nobel Symp. 63, (in the press).

  17. Tsien, R. Y. Biochemistry 19, 2396–2404 (1980).

    Article  CAS  Google Scholar 

  18. Meech, R. W. A. Rev. Biophys. Bioengng 7, 1–18 (1978).

    Article  ADS  CAS  Google Scholar 

  19. Hagiwara, S. & Byerly, L. A. Rev. Neurosci. 4, 69–125 (1981).

    Article  CAS  Google Scholar 

  20. Byerly, L., Meech, R. & Moody, W. Jr J. Physiol., Lond. 351, 199–216 (1984).

    Article  CAS  Google Scholar 

  21. Thomas, R. C. & Meech, R. W. Nature 299, 826–828 (1982).

    Article  ADS  CAS  Google Scholar 

  22. Sigworth, F. J. & Neher, E. Nature 287, 447–449 (1980).

    Article  ADS  CAS  Google Scholar 

  23. Horn, R. & Patlak, J. Proc. natn. Acad. Sci. U.S.A. 77, 6930–6934 (1980).

    Article  ADS  CAS  Google Scholar 

  24. Barrett, J. N., Magleby, K. L. & Pallotta, B. S. J. Physiol., Lond. 331, 211–230 (1982).

    Article  CAS  Google Scholar 

  25. Cook, D. L., Ikeuchi, M. & Fujimoto, W. Y. Nature 311, 269–271 (1984).

    Article  ADS  CAS  Google Scholar 

  26. Findlay, I. J. Physiol., Lond. 350, 179–195 (1984).

    Article  CAS  Google Scholar 

  27. Inoue, R., Kitamura, K. & Kuriyama, H. Pflügers Arch. ges. Physiol. 405, 173–179 (1985).

    Article  CAS  Google Scholar 

  28. Marty, A. Nature 291, 497–500 (1981).

    Article  ADS  CAS  Google Scholar 

  29. Maruyama, Y., Petersen, O. H., Flanagan, P. & Pearson, G. T. Nature 305, 228–232 (1983).

    Article  ADS  CAS  Google Scholar 

  30. Wong, B. S., Lecar, H. & Adler, M. Biophys. J. 39, 313–317 (1982).

    Article  ADS  CAS  Google Scholar 

  31. Yellen, G. J. gen. Physiol. 84, 157–186 (1984).

    Article  CAS  Google Scholar 

  32. Grygorczyk, R., Schwarz, W. & Passow, H. Biophys. J. 45, 693–698 (1984).

    Article  CAS  Google Scholar 

  33. Marty, A. Pflügers Arch. ges. Physiol. 396, 179–181 (1983).

    Article  CAS  Google Scholar 

  34. Singer, J. J. & Walsh, J. V. Jr Biophys. J. 45, 68–70 (1984).

    Article  ADS  CAS  Google Scholar 

  35. Bosher, S. K. & Warren, R. L. Nature 273, 377–378 (1978).

    Article  ADS  CAS  Google Scholar 

  36. Bosher, S. K. Acta oto-lar. 90, 219–229 (1980).

    Article  CAS  Google Scholar 

  37. Konishi, T. & Salt, A. N. Expl Brain Res. 40, 457–463 (1980).

    Article  CAS  Google Scholar 

  38. Yellen, G. Nature 296, 357–359 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashmore, J., Meech, R. Ionic basis of membrane potential in outer hair cells of guinea pig cochlea. Nature 322, 368–371 (1986). https://doi.org/10.1038/322368a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/322368a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing