Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A crucial epileptogenic site in the deep prepiriform cortex

A Corrigendum to this article was published on 01 December 1985

Abstract

Antagonists of γ-aminobutyric acid (GABA)- or glycine-mediated neurotransmission, muscarinic cholinergic agonists, and excitatory amino acids and their analogues are all considered to be potent chemoconvulsant agents. However, although systemic injections of these agents have been used to create experimental models of generalized epilepsy, there has been no identification of a specific locus at which any of these drugs act to initiate generalized seizures. We recently located a forebrain region from which seizures can be elicited by the GABA antagonist bicuculline1, and now report that manipulations of excitatory amino acid transmission and cholinergic transmission can also elicit seizures from this site. Bilateral clonic seizures can be elicited after unilateral application of picomole amounts of bicuculline, kainic acid or carbachol and micromole amounts of glutamate. Local application of the GABA agonist muscimol prevents the appearance of seizures on subsequent microinjection of all convulsant agents examined, whereas local application of the muscarinic antagonist, atropine, only prevents seizures induced by carbachol. This region is therefore a site of action for the epileptogenic effects of neuroactive agents with diverse mechanisms of action; it may also represent a site at which GABA agonists could function therapeutically to control epileptogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Piredda, S., Lim, C. R. & Gale, K. Life Sci. 36, 1295–1298 (1985).

    Article  CAS  Google Scholar 

  2. Ben-Ari, Y., Tremblay, E., Riche, E., Glilini, G. & Naquet, R. Neuroscience 6, 1361–1391 (1981).

    Article  CAS  Google Scholar 

  3. Evans, M. L. & Meldrum, B. S. Brain Res. 297, 235–245 (1984).

    Article  CAS  Google Scholar 

  4. Lothman, E. W., Collins, R. C. & Ferrendelli, J. A. Neurology 31, 806–812 (1981).

    Article  CAS  Google Scholar 

  5. Baker, W. W. & Benedict, F. Int. J. Neuropharmac. 7, 135–147 (1968).

    Article  CAS  Google Scholar 

  6. Wasterlain, C. G., Masuoka, D. & Jonec, V. in Kindling Vol. 2 (ed. Wada, J. A.) 315–329 (Raven, New York, 1981).

    Google Scholar 

  7. Grossman, S. P. Science 142, 409–410 (1963).

    Article  ADS  CAS  Google Scholar 

  8. Ben-Ari, Y., Tremblay, E. & Ottersen, O. P. Neuroscience 5, 515–528 (1980).

    Article  CAS  Google Scholar 

  9. Schwarcz, R., Zaczek, R. & Coyle, J. Eur. J. Pharmac. 59, 209–220 (1978).

    Article  Google Scholar 

  10. Ben-Ari, Y., Tremblay, E., Ottersen, O. P. & Meldrum, B. S. Brain Res. 191, 79–97 (1980).

    Article  CAS  Google Scholar 

  11. Baglioni, S. & Magnini, M. Archs Fisiol. 6, 240–249 (1909).

    Google Scholar 

  12. Labruyere, J., Olney, J. W., Collins, R. C. Soc. Neurosci. Abstr. 1012 (1982).

  13. Baxter, B. L. Expl Neurol. 19, 412–432 (1967).

    Article  CAS  Google Scholar 

  14. Vosu, H. & Wise, R. A. Behav. Biol. 13, 491–495 (1975).

    Article  CAS  Google Scholar 

  15. Wasterlain, C. G. & Jonec, V. Brain Res. 271, 311–323 (1983).

    Article  CAS  Google Scholar 

  16. Racine, R. J. Electroenceph. clin. Neurophys. 32, 281–294 (1972).

    Article  CAS  Google Scholar 

  17. Haberly, L. B. & Price, J. L. J. comp. Neurol. 178, 711–740 (1978).

    Article  CAS  Google Scholar 

  18. Pellegrino, L. J. & Cushman, A. J. A Stereotaxic Atlas of the Rat Brain (Appleton-Century-Crofts, New York, 1967).

    Google Scholar 

  19. Engel, J. Jr, Wolfson, L. & Brown, L. Ann. Neurol. 3, 538–544 (1978).

    Article  Google Scholar 

  20. Le Gal La Salle, G. in Kindling 2 (ed. Wada, J. A.) 31–47 (Raven, New York, 1981).

    Google Scholar 

  21. McNamara, J. O., Byrne, N. C., Dasheif, R. M. & Fitz, J. G. Prog. Neurobiol. 15, 139–159 (1980).

    Article  CAS  Google Scholar 

  22. Racine, R. J. & Burnham, W. M. in Electrophysiology of Epilepsy (eds Schwartzkroin, P. A. & Wheal, H. V.) 153–171 (Academic, London, 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piredda, S., Gale, K. A crucial epileptogenic site in the deep prepiriform cortex. Nature 317, 623–625 (1985). https://doi.org/10.1038/317623a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/317623a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing