Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Size of scallops and ripples formed by flowing water

Abstract

THE passage of water over a soluble solid wall often gives rise to intersecting polygonal depressions or horseshoe-shaped pits known as scallops and flutes1,2. The geometry of these surface deformations is remarkably reproducible in given flow conditions, but there is no generally agreed theoretical framework for predicting their characteristic dimensions, such as the spacing between successive transverse ridges. I present here indirect evidence in support of the hypothesis that the scalloping of soluble surfaces is due to the imprint of eddy patterns inherent in turbulent flow near a passive wall, and argue that small ripples on a granular bed may be formed in essentially the same way.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Allen, J. R. L. Sediment. Geol. 5, 165–385 (1971).

    Article  ADS  Google Scholar 

  2. Allen, J. R. L. J. Fluid. Mech. 49, 49–63 (1971).

    Article  ADS  Google Scholar 

  3. Maxson, J. H. & Campbell, I. J. Geol. 43, 729–744 (1935).

    Article  ADS  Google Scholar 

  4. Maxson, J. H. J. Geol. 48, 717–751 (1940).

    Article  ADS  Google Scholar 

  5. Curl, R. L. Trans. Cave Res. Gp. Gt. Br. 7, 121–160 (1966).

    Google Scholar 

  6. Blumberg, P. N. & Curl, R. L. J. Fluid Mech. 65, 735–751 (1974).

    Article  ADS  Google Scholar 

  7. Townsend, A. A. The Structure of Turbulent Shear Flow, 2nd edn (Cambridge University Press, 1976).

    MATH  Google Scholar 

  8. Raudkivi, A. J. Loose Boundary Hydraulics (Pergamon, Oxford, 1967).

    Google Scholar 

  9. Guy, H. P., Simons, D. B. & Richardson, E. V. U.S. Geol. Surv. Prof. Paper 462–I (1966).

  10. Pratt, C. J. & Smith, K. V. H. J. Hydraul. Div. Am. Soc. civ. Engr. 98, 859–874 (1972).

    Google Scholar 

  11. Jackson, R. G. J. Fluid Mech. 77, 531–560 (1976).

    Article  ADS  Google Scholar 

  12. Schoch, W. Mitt. VGB 48, 239–253 (1968).

    Google Scholar 

  13. Schoch, W., Richter, R. & Köhle, H. Mitt. VGB 49, 202–208 (1969).

    CAS  Google Scholar 

  14. Blaschke, R., Kirsch, H. & Otteman, J. VGB Speisewassertagung 2–11 (1969).

  15. Schoch, W., Richter, R. & Effertz, P. H. Der Maschinenschaden 43, 65–77 (1970).

    CAS  Google Scholar 

  16. Schoch, W., Wiehn, H., Richter, R. & Schuster, H. Mitt. VGB 50, 277–295 (1970); Mitt. VGB 52, 228–242 (1972).

    CAS  Google Scholar 

  17. Schuster, H. Allianz-Berichte 16, 28–37 (1971).

    Google Scholar 

  18. Heimsch, R. et al. VGB Kraftwerkstechnik 58, 117–126 (1978).

    CAS  Google Scholar 

  19. Streeter, V. L. (ed.) Handbook of Fluid Dynamics (McGraw-Hill, New York, 1961).

  20. Sick, H. Werst. u. Korr. 23, 12–18 (1972).

    Article  CAS  Google Scholar 

  21. Knutsson, L., Mattsson, E. & Ramberg, B. E. Br. Corros. J. 7, 208–211 (1972).

    Article  CAS  Google Scholar 

  22. Brauer, H. Chemiker-Ztg. 87, 199–208; 87, 289–293 (1963).

    Google Scholar 

  23. Brunton, J. H. Phil. Trans. R. Soc. A 260, 79–85 (1966).

    Article  ADS  Google Scholar 

  24. Wiederhold, W. Gas u. Wasserfach 90, 634–641 (1949).

    Google Scholar 

  25. Seiferth, R. & Krüger, W. VDI-Zeitschrift 92, 189–191 (1950).

    Google Scholar 

  26. Ashton, G. D. & Kennedy, J. F. J. Hydraul. Div. Am. Soc. civ. Engr. 98, 1603–1624 (1972).

    Google Scholar 

  27. Jain, S. C. and Kennedy, J. F. J. Fluid Mech. 63, 301–314 (1974).

    Article  ADS  Google Scholar 

  28. Corino, E. R. and Brodkey, R. S. J. Fluid Mech. 37, 1–30 (1969).

    Article  ADS  Google Scholar 

  29. Offen, G. R. and Kline, S. J. J. Fluid Mech. 70, 209–228 (1975).

    Article  ADS  Google Scholar 

  30. Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. J. Fluid Mech. 30, 741–773 (1967).

    Article  ADS  Google Scholar 

  31. Bakewell, H. P. & Lumley, J. L. Phys. Fluids 10, 1880–1889 (1967).

    Article  ADS  CAS  Google Scholar 

  32. Gupta, A. K., Laufer, J. & Kaplan, R. E. J. Fluid Mech. 50, 493–512 (1971).

    Article  ADS  Google Scholar 

  33. Morrison, W. R. B., Bullock, K. J. & Kronauer, R. E. J. Fluid Mech. 47, 639–656 (1971).

    Article  ADS  Google Scholar 

  34. Liu, C. K., Kline, S. J. & Johnston, J. P. Mech. Engng Dept. Stanford Univ. Rep. MD–15 (1966).

  35. Grass, A. J. J. Fluid Mech. 50, 233–255 (1971).

    Article  ADS  Google Scholar 

  36. Allen, J. R. L. J. Sediment. Petrol. 39, 607–623 (1969).

    Article  Google Scholar 

  37. Gessner, W. Chemiker-Ztg 84, 329–333, 394–398, 463–470 (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

THOMAS, R. Size of scallops and ripples formed by flowing water. Nature 277, 281–283 (1979). https://doi.org/10.1038/277281a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/277281a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing