Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors

Abstract

Tcf/Lef transcription factors mediate signalling from Wingless/Wnt proteins by recruiting Armadillo/β-catenin as a transcriptional co-activator1,2,3,4,5,6,7. However, studies of Drosophila, Xenopus and Caenorhabditis elegans have indicated that Tcf factors may also be transcriptional repressors6,8,9,10,11,12,13. Here we show that Tcf factors physically interact with members of the Groucho family of transcriptional repressors. In transient transfection assays, the Xenopus Groucho homologue XGrg-4 inhibited activation of transcription of synthetic Tcf reporter genes. In contrast, the naturally truncated Groucho-family member XGrg-5 enhanced transcriptional activation. Injection of XGrg-4 into Xenopus embryos repressed transcription of Siamois and Xnr-3, endogenous targets of β-catenin–Tcf. Dorsal injection of XGrg-4 had a ventralizing effect on Xenopus embryos. Secondary-axis formation induced by a dominant-positive Armadillo–Tcf fusion protein was inhibited by XGrg-4 and enhanced by XGrg-5. These data indicate that expression of Tcf target genes is regulated by a balance between Armadillo and Groucho.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Physical interaction between Groucho (Gro)-related proteins and Tcf.
Figure 2: Gro represses Arm–Tcf-driven transactivation of a Tcf reporter.
Figure 3: XGrg-4 represses Siamois promoter activity in vivo.
Figure 4: Dorsal injection of XGrg-4 suppresses endogenous axis formation.

Similar content being viewed by others

References

  1. Behrens, J. et al . Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382, 638–642 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Molenaar, M. et al . XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399 (1996).

    Article  CAS  Google Scholar 

  3. Huber, O. et al . Nuclear localization of beta-catenin by interaction with transcription factor LEF-1. Mech. Dev. 59, 3–10 (1996).

    Article  CAS  Google Scholar 

  4. Brunner, E., Peter, O., Schweizer, L. & Basler, K. pangolin encodes a Lef-1 homologue that acts downstream of Armadillo to transduce the Wingless signal in Drosophila. Nature 385, 829–833 (1997).

    Article  ADS  CAS  Google Scholar 

  5. van de Wetering, M. et al . Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88, 789–799 (1997).

    Article  CAS  Google Scholar 

  6. Riese, J. et al . LEF-1, a nuclear factor coordinating signaling inputs from wingless and decapentaplegic. Cell 88, 777–787 (1997).

    Article  CAS  Google Scholar 

  7. Cadigan, K. M. & Nusse, R. Wnt signaling: a common theme in animal development. Genes Dev. 11, 3286–3305 (1997).

    Article  CAS  Google Scholar 

  8. Thorpe, C. J., Schlesinger, A., Carter, J. C. & Bowerman, B. Wnt signaling polarizes an early C. elegans blastomere to distinguish endoderm from mesoderm. Cell 90, 695–705 (1997).

    Article  CAS  Google Scholar 

  9. Rocheleau, C. E. et al . Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos. Cell 90, 707–716 (1997).

    Article  CAS  Google Scholar 

  10. Lemaire, P. et al . Expression cloning of Siamois, a Xenopus homeobox gene expressed in dorsal-vegetal cells of blastulae and able to induce a complete secondary axis. Cell 81, 85–94 (1995).

    Article  CAS  Google Scholar 

  11. Brannon, M., Gomperts, M., Sumoy, L., Moon, R. T. & Kimelman, D. Abeta-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes Dev. 11, 2359–2370 (1997).

    Article  CAS  Google Scholar 

  12. Han, M. Gut reaction to Wnt signaling in worms. Cell 90, 581–584 (1997).

    Article  CAS  Google Scholar 

  13. Bienz, M. TCF: transcriptional activator or repressor? Curr. Opin. Cell Biol. 10, 366–372 (1998).

    Article  CAS  Google Scholar 

  14. Mallo, M., Franco del Amo, F. & Gridley, T. Cloning and developmental expression of Grg, a mouse gene related to the groucho transcript of the Drosophila Enhancer of split complex. Mech. Dev. 42, 67–76 (1993).

    Article  CAS  Google Scholar 

  15. Hartley, D. A., Preiss, A. & Artavanis Tsakonas, S. Adeduced gene product from the Drosophila neurogenic locus, enhancer of split, shows homology to mammalian G-protein beta subunit. Cell 55, 785–795 (1988).

    Article  CAS  Google Scholar 

  16. Paroush, Z. et al . Groucho is required for Drosophila neurogenesis, segmentation, and sex determination and interacts directly with hairy-related bHLH proteins. Cell 79, 805–815 (1994).

    Article  CAS  Google Scholar 

  17. Parkhurst, S. M. Groucho: making its Marx as a transcriptional co-repressor. Trends Genet. 14, 130–132 (1998).

    Article  CAS  Google Scholar 

  18. Fisher, A. L. & Caudy, M. Groucho proteins: transcriptional corepressors for specific subsets of DNA-binding transcription factors in vertebrates and invertebrates. Genes Dev. 12, 1931–1940 (1998).

    Article  CAS  Google Scholar 

  19. Jimenez, G., Paroush, Z. & Ish Horowicz, D. Groucho acts as a corepressor for a subset of negative regulators, including Hairy and Engrailed. Genes Dev. 11, 3072–3082 (1997).

    Article  CAS  Google Scholar 

  20. Choudhury, B. K., Kim, J., Kung, H. F. & Li, S. S. Cloning and developmental expression of Xenopus cDNAs encoding the Enhancer of split groucho and related proteins. Gene 195, 41–48 (1997).

    Article  CAS  Google Scholar 

  21. Pinto, M. & Lobe, C. G. Products of the grg (Groucho-related gene) family can dimerize through the amino-terminal Q domain. J. Biol. Chem. 271, 33026–33031 (1996).

    Article  CAS  Google Scholar 

  22. Korinek, V. et al . Two members of the Tcf family implicated in Wnt/β-catenin signaling during embryogenesis in the mouse. Mol. Cell. Biol. 18, 1248–1256 (1998).

    Article  CAS  Google Scholar 

  23. Laurent, M. N., Blitz, I. L., Hashimoto, C., Rothbächer, U. & Cho, K. W. Y. The Xenopus homeobox gene Twin mediates Wnt induction of Goosecoid in establishment of Spemann's organizer. Development 124, 4905–4916 (1997).

    CAS  PubMed  Google Scholar 

  24. McKendry, R., Hsu, S. C., Harland, R. M. & Grosschedl, R. LEF-1/TCF proteins mediate wnt-inducible transcription from the Xenopus nodal-related 3 promoter. Dev. Biol. 192, 420–431 (1997).

    Article  CAS  Google Scholar 

  25. Harland, R. M. et al . In situ hybridization: an improved whole mount method for Xenopus laevis. Methods Enzymol. 36, 685–697 (1991).

    CAS  Google Scholar 

  26. Smith, W. C. & Harland, R. M. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70, 829–840 (1992).

    Article  CAS  Google Scholar 

  27. Korinek, V. et al . Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC−/− colon carcinoma. Science 275, 1784–1787 (1997).

    Article  CAS  Google Scholar 

  28. Morin, P. J. et al . Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275, 1787–1790 (1997).

    Article  CAS  Google Scholar 

  29. Rubinfeld, B. et al . Stabilization of beta-catenin by genetic defects in melanoma cell lines. Science 275, 1790–1792 (1997).

    Article  CAS  Google Scholar 

  30. Kao, K. & Elinson, R. P. The entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos. Dev. Biol. 127, 64–77 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Peifer and A. Bejsovec for sharing unpublished information; C. Lobe and K. Koop for Grg cDNAs; S. Stifani for TLE cDNAs and helpful comments; W. C. Smith for Xnr3 and Xnoggin cDNA; D. Kimelman for siamois reporter constructs; and R. Medema for biochemical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Clevers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roose, J., Molenaar, M., Peterson, J. et al. The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature 395, 608–612 (1998). https://doi.org/10.1038/26989

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/26989

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing