Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regulation of alternative splicing by RNA editing

Abstract

The enzyme ADAR2 is a double-stranded RNA-specific adenosine deaminase which is involved in the editing of mammalian messenger RNAs by the site-specific conversion of adenosine to inosine1,2,3. Here we identify several rat ADAR2 mRNAs produced as a result of two distinct alternative splicing events. One such splicing event uses a proximal 3′ acceptor site, adding 47 nucleotides to the ADAR2 coding region, changing the predicted reading frame of the mature ADAR2 transcript. Nucleotide-sequence analysis of ADAR2 genomic DNA revealed the presence of adenosine–adenosine (AA) and adenosine–guanosine (AG) dinucleotides at these proximal and distal alternative 3′ acceptor sites, respectively. Use of the proximal 3′ acceptor depends upon the ability of ADAR2 to edit its own pre-mRNA, converting the intronic AA to an adenosine–inosine (Al) dinucleotide which effectively mimics the highly conserved AG sequence normally found at 3′ splice junctions. Our observations indicate that RNA editing can serve as a mechanism for regulating alternative splicing and they suggest a novel strategy by which ADAR2 can modulate its own expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of multiple rADAR2 mRNA and protein isoforms by alternative splicing.
Figure 2: Immunoblotting analysis of epitope (Flag)-tagged wild-type and mutant rADAR2 proteins.
Figure 3: Analysis of tissue-specific ADAR2 alternative splicing patterns.
Figure 4: RNA editing and splicing of rat ADAR2 transcripts.
Figure 5: Identification of rADAR2 cis -active regulatory elements.

Similar content being viewed by others

References

  1. Rueter, S. & Emeson, R. in Modification and Editing of RNA(eds Grosjean, H. & Benne, R.) 343–361 (ASM, Washington DC, (1998).

    Book  Google Scholar 

  2. Melcher, T. et al . Amammalian RNA editing enzyme. Nature 379, 460–464 (1996).

    Article  ADS  CAS  Google Scholar 

  3. O'Connell, M. A., Gerber, A. & Keller, W. Purification of human double-stranded RNA-specific editase 1 (hRED1) involved in editing of brain glutamate receptor B pre-mRNA. J. Biol. Chem. 272, 473–478 (1997).

    Article  CAS  Google Scholar 

  4. Bass, B. L. et al . Astandardized nomenclature for adenosine deaminases that act on RNA. RNA 3, 947–949 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gerber, A., O'Connell, M. A. & Keller, W. Two forms of human double-stranded RNA-specific editase 1 (hRED1) generated by the insertion of an Alu cassette. RNA 3, 453–463 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lai, F., Chen, C. X., Carter, K. C. & Nishikura, K. Editing of glutamate receptor B subunit ion channel RNAs by four alternatively spliced DRADA2 double-stranded RNA adenosine deaminases. Mol. Cell. Biol. 17, 2413–2424 (1997).

    Article  CAS  Google Scholar 

  7. Lai, F., Drakas, R. & Nishikura, K. Mutagenic analysis of double-stranded RNA adenosine deaminase, a candidate enzyme for RNA editing of glutamate-gated ion channel transcripts. J. Biol. Chem. 270, 17096–17105 (1995).

    Google Scholar 

  8. Maas, S. et al . Structural requirements for RNA editing in glutamate receptor pre-mRNAs by recombinant double-stranded RNA adenosine deaminase. J. Biol. Chem. 271, 12221–12226 (1996).

    Article  CAS  Google Scholar 

  9. Burns, C. M. et al . Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387, 303–308 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Farabaugh, P. J. Programmed translational frameshifting. Microbiol. Rev. 60, 103–134 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Calligaris, R., Bottardi, S., Cogoi, S., Apezteguia, I. & Santonro, C. Alternative translation initiation site usage results in two functionally distinct forms of the GATA-1 transcription factor. Proc. Natl Acad. Sci. USA 92, 11598–11602 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Schreiber, E., Matthias, P., Muller, M. M. & Schaffner, W. Rapid detection of octamer binding proteins with ‘mini-extracts’, prepared from a small number of cells. Nucleic Acids Res. 17, 6419 (1989).

    Article  CAS  Google Scholar 

  13. Kim, U., Wang, Y., Sanford, T., Zeng, Y. & Nishikura, K. Molecular cloning of cDNA for double-stranded RNA adenosine deaminase, a candidate enzyme for nuclear RNA editing. Proc. Natl Acad. Sci. USA 91, 11457–11461 (1994).

    Article  ADS  CAS  Google Scholar 

  14. O'Connell, M. A. et al . Cloning of cDNAs encoding mammalian double-stranded RNA-specific adenosine deaminase. Mol. Cell Biol. 15, 1389–1397 (1995).

    Article  CAS  Google Scholar 

  15. Kozak, M. An analysis of vertebrate mRNA sequences: intimations of translational control. J. Cell Biol. 115, 887–903 (1991).

    Article  CAS  Google Scholar 

  16. Melcher, T. et al . RED2, a brain-specific member of the RNA-specific adenosine deaminase family. J. Biol. Chem. 271, 31795–31798 (1996).

    Article  CAS  Google Scholar 

  17. Mount, S. M. Acatalogue of splice junction sequences. Nucleic Acids Res. 10, 459–472 (1982).

    Article  CAS  Google Scholar 

  18. Jackson, I. J. Areappraisal of non-consensus mRNA splice sites. Nucleic Acids Res. 19, 3795–3798 (1991).

    Article  CAS  Google Scholar 

  19. Reed, R. The organization of 3′ splice-site sequences in mammalian introns. Genes Dev. 3, 2113–2123 (1989).

    Article  CAS  Google Scholar 

  20. Deirdre, A., Scadden, J. & Smith, C. W. Interactions between the terminal bases of mammalian introns are retained in inosine-containing pre-mRNAs. EMBO J. 14, 3236–3246 (1995).

    Article  CAS  Google Scholar 

  21. Tarn, W. Y. Site-specific substitution of inosine at the terminal positions of a pre-mRNA intron: implications for the configuration of the terminal base interaction. Biochimie 78, 1057–1065 (1996).

    Article  CAS  Google Scholar 

  22. Zuker, M. Prediction of RNA secondary structure by energy minimization. Methods Mol. Biol. 25, 267–294 (1994).

    CAS  PubMed  Google Scholar 

  23. Rechsteiner, M. & Rogers, S. W. PEST sequences and regulation by proteolysis. Trends Biochem. Sci. 21, 267–271 (1996).

    Article  CAS  Google Scholar 

  24. Current Protocols in Molecular Biology(eds Ausubel, F. et al. ) (Wiley, New York, (1989).

  25. Rueter, S. M., Burns, C. M., Coode, S. A., Mookherjee, P. & Emeson, R. B. Glutamate receptor RNA editing in vitro by enzymatic conversion of adenosine to inosine. Science 267, 1491–1494 (1995).

    Article  ADS  CAS  Google Scholar 

  26. Emeson, R. B., Hedjran, F., Yeakley, J. M., Guise, J. W. & Rosenfeld, M. G. Alternative production of calcitonin and CGRP mRNA is regulated at the calcitonin-specific splice acceptor. Nature 341, 76–80 (1989).

    Article  ADS  CAS  Google Scholar 

  27. Kunkel, T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Natl Acad. Sci. USA 82, 488–492 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Barnett, J. Patton, B. Wadzinski, C. Desai and members of R.B.E.'s laboratory for critically reading this manuscript. This work was supported by a grant from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald B. Emeson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rueter, S., Dawson, T. & Emeson, R. Regulation of alternative splicing by RNA editing. Nature 399, 75–80 (1999). https://doi.org/10.1038/19992

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/19992

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing