Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A RA-dependent, tumour-growth suppressive transcription complex is the target of the PML-RARα and T18 oncoproteins

Abstract

PML and Tif1a are fused to RARA and Braf, respectively, resulting in the production of PML-RARα and Tif1α-B-Raf (T18) oncoproteins. Here we show that PML, Tif1α and RXRα/RARα function together in a transcription complex that is dependent on retinoic acid (RA). We found that PML acts as a ligand-dependent coactivator of RXRα/RARα. PML interacts with Tif1α and CBP. In Pml–/– cells, the RA-dependent induction of genes such as RARB2 and the ability of Tif1α and CBP to act as transcriptional coactivators on RA are impaired. We show that both PML and Tif1α are growth suppressors required for the growth-inhibitory activity of RA. T18, similar to PML-RARα, disrupts the RA-dependent activity of this complex in a dominant-negative manner resulting in a growth advantage. Our data define a new pathway for the control of cell growth and tumorigenesis, and provide a new model for the pathogenesis of acute promyelocytic leukaemia (APL).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PML is a coactivator of the RARα/RXRα transcription complex.
Figure 2: Endogenous PML binds selectively to liganded GST-RARα.
Figure 3: Loss of Pml impairs RA-dependent transcription.
Figure 4: PML interacts with Tif1α and CBP in vivo.
Figure 5: Tif1α is a growth suppressor.
Figure 6: T18 delocalizes Tif1α from the nucleus to the cytoplasm.
Figure 7: T18 is a dominant-negative inhibitor of the RA-dependent nuclear complex.
Figure 8: A schematic representation of the role of TGS-RANC and a new model for APL pathogenesis.

Similar content being viewed by others

References

  1. Smith, M.A., Parkinson, D.R., Cheson, B.D. & Friedman, M.A. Retinoids in cancer therapy. J. Clin. Oncol. 10, 839–864 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Gudas, L.J., Sporn, M.B. & Roberts, A.B. The Retinoids: Cellular Biology and Biochemistry of the Retinoids 443–520 (Raven Press, New York, 1994).

    Google Scholar 

  3. Chambon, P. A decade of molecular biology of retinoic acid receptors. FASEB J. 10, 955–960 (1996).

    Article  Google Scholar 

  4. He, L.-Z., Merghoub, T. & Pandolfi, P.P. In vivo analysis of the molecular pathogenesis of acute promyelocytic leukemia in the mouse and its therapeutic implications. Oncogene 18, 5278–5292 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Borden, K.L.B. et al. The solution structure of the RING finger domain from the acute promyelocytic leukaemia proto-oncoprotein PML. EMBO J. 14, 1532–1541 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Perez, A. et al. PML/RAR homodimers: distinct DNA binding properties and heteromeric interactions with RAR. EMBO J. 12, 3171–3182 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fagioli, M. et al. Identification of various PML gene isoforms and characterization of their origin and expression pattern. Oncogene 7, 1083–1091 (1992).

    CAS  PubMed  Google Scholar 

  8. Hodges, M., Tissot, C., Howe, K., Grimwade, D. & Freemont, P.S. Structure, organization, and dynamics of promyelocytic leukemia protein nuclear bodies. Am. J. Hum. Genet. 63, 297–304 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gaboli, M., Gandini, D., Delva, L., Wang, Z.G. & Pandolfi, P.P. Acute promyelocytic leukemia as a model for cross-talk between interferon and retinoic acid pathways: from molecular biology to clinical applications. Leuk. Lymphoma 30, 11–22 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Mu, Z.M., Chin, K.V., Liu, J.H., Lozano, G. & Chang, K.S. PML, a growth suppressor disrupted in acute promyelocytic leukemia. Mol. Cell. Biol. 14, 6858–6867 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, Z.G. et al. Role of PML in cell growth and the retinoic acid pathway. Science 279, 1547–1551 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, Z.-G. et al. Pml is essential for multiple apoptotic pathways. Nature Genet. 20, 266–271 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Miki, T. et al. Development of a highly efficient expression cDNA cloning system: application to oncogene isolation. Proc. Natl Acad. Sci. USA 88, 5167–5171 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Le Douarin, B. et al. The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18. EMBO J. 14, 2020–2033 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Klugbauer, S. & Rabes, H.M. The transcription coactivator HTIF1 and a related protein are fused to the RET receptor tyrosine kinase in childhood papillary thyroid carcinomas. Oncogene 18, 4388–4393 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. vom Baur, E. et al. Differential ligand dependent interactions between the AF-2 activating domain of nuclear receptors and the putative transcriptional intermediary factors mSUG1 and TIF1. EMBO J. 15, 110–124 (1995).

    Article  Google Scholar 

  17. de Thé, H., Vivanco-Ruiz, M.d.M., Tiollais, P., Stunnenberg, H. & Dejean, A. Identification of a retinoic acid responsive element in the retinoic acid receptor β gene. Nature 343, 177–180 (1990).

    Article  PubMed  Google Scholar 

  18. Rachez, C. et al. A novel protein complex that interacts with the vitamin D3 receptor in a ligand-dependent manner and enhances VDR transactivation in a cell-free system. Genes Dev. 12, 1787–1800 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rachez, C. et al. Ligand-dependent transcription activation by nuclear receptors requires the DRIP complex. Nature 398, 824–828 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Näär, A.M. et al. Composite co-activator ARC mediates chromatin-directed transcriptional activation. Nature 398, 828–832 (1999).

    Article  PubMed  Google Scholar 

  21. Fondell, J.D., Ge, H. & Roeder, R.G. Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex. Proc. Natl Acad. Sci. USA 93, 8329–8333 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chakravati, D. et al. Role of CBP/P300 in nuclear receptor signalling. Nature 383, 99–103 (1996).

    Article  Google Scholar 

  23. Bannister, A.J. & Kouzarides, T. The CBP co-activator is a histone acetyltransferase. Nature 384, 641–643 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. LaMorte, V.J., Dyck, J.A., Ochs, R.L. & Evans, R.M. Localization of nascent RNA and CREB binding protein with the PML-containing nuclear body. Proc. Natl Acad. Sci. USA 95, 4991–4996 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fagioli, M. et al. Cooperation between the RING + B1-B2 and coiled-coil domains of PML is necessary for its effects on cell survival. Oncogene 16, 2905–2913 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Vallian, S. et al. Modulation of Fos-mediated AP-1 transcription by the promyelocytic leukemia protein. Oncogene 16, 2843–2853 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Vallian, S., Chin, K.V. & Chang, K.S. The promyelocytic leukemia protein interacts with Sp1 and inhibits its transactivation of the epidermal growth factor receptor promoter. Mol. Cell. Biol. 18, 7147–7156 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alcalay, M. et al. The promyelocytic leukemia gene product (PML) forms stable complexes with the retinoblastoma protein. Mol. Cell. Biol. 18, 1084–1093 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guiochon-Mantel, A. et al. Effect of PML and PML-RAR on the transactivation properties and subcellular distribution of steroid hormone receptors. Mol. Endocrinol. 9, 1791–1803 (1995).

    CAS  PubMed  Google Scholar 

  30. Liu, M., Iavarone, A. & Freedman, L.P. Retinoid induction of U937 cell differentiation: transcriptional activation of the human p21WAF1/CIP1 gene by retinoic acid receptor. J. Biol. Chem. 271, 31723–31728 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Pomponi, F. et al. Retinoids irreversibly inhibit in vitro growth of Epstein-Barr virus-immortalized B lymphocytes. Blood 88, 3147–3159 (1996).

    CAS  PubMed  Google Scholar 

  32. Schüle, R. et al. Retinoic acid is a negative regulator of AP-1-responsive genes. Proc. Natl Acad. Sci. USA 88, 6092–6096 (1991).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kamei, Y. et al. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85, 403–414 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Huang, C. et al. Blocking activator protein-1 activity, but not activating retinoic acid response element, is required for the antitumor promotion effect of retinoic acid. Proc. Natl Acad. Sci. USA 94, 5826–5830 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nason-Burchenal, K. et al. Interferon augments PML and PML/RARα expression in normal meyloid and acute promyelocytic cells and cooperates with all-trans retinoic acid to induce maturation of a retinoid resistant promyelocytic cell line. Blood 88, 3926–3936 (1996).

    CAS  PubMed  Google Scholar 

  36. Flenghi, L. et al. Characterization of a new monoclonal antibody (PG-M3) directed against the aminoterminal portion of the PML gene product: immunocytochemical evidence for high expression of PML proteins on activated macrophages, endothelial cells, and epithelia. Blood 85, 1871–1880 (1995).

    CAS  PubMed  Google Scholar 

  37. de Thé, H., Marchio, A., Tiollais, P. & Dejean, A. Differential expression and ligand regulation of the retinoic acid receptor α and β genes. EMBO J. 8, 429–433 (1989).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vasios, G.W., Gold, J.D., Petkovitch, M., Chambon, P. & Gudas, L.J. A retinoic acid-responsive element is present in the 5′ flanking region of the laminin B1 gene. Proc. Natl Acad. Sci. USA 86, 9099–9103 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Manshouri, T. et al. Downregulation of RARα in mice by antisense transgene leads to a compensatory increase in RARβ and RARα and development of lymphoma. Blood 89, 2507–2515 (1997).

    CAS  PubMed  Google Scholar 

  40. David, G., Terris, B., Marchio, A., Lavau, C. & Dejean, A. The acute promyelocytic leukemia PML-RARα protein induces hepatic preneoplastic and neoplastic lesions in transgenic mice. Oncogene 14, 1547–1554 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. He, L.Z. et al. Distinct interactions of PML-RARα and PLZF-RARα with co-repressors determine differential responses to RA in APL. Nature Genet. 18, 126–135 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Grignani, F. et al. Fusion proteins of the retinoic acid receptor-α recruit histone deacetylase in promyelocytic leukaemia. Nature 391, 815–818 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Lin, R.J. et al. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 391, 811–814 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Boddy, M.N., Howe, K., Etkin, L.D., Solomon, E. & Freemont, P.S. PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. Oncogene 13, 971–982 (1996).

    CAS  PubMed  Google Scholar 

  45. Filvaroff, E., Stern, D.F. & Dotto, G.P. Tyrosine phosphorylation is an early and specific event involved in primary keratinocyte differentiation. Mol. Cell. Biol. 10, 1164–1173 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Glass, C.K., Holloway, J.M., Devary, O.V. & Rosenfeld, M.G. The thyroid hormone receptor binds with opposite transcriptional effects to a common sequence motif in thyroid hormone and estrogen response elements. Cell 54, 313–323 (1988).

    Article  CAS  PubMed  Google Scholar 

  47. Jin, S. & Scotto, K.W. Transcriptional regulation of the MDR1 gene by histone acetyltransferase and deacetylase is mediated by NF-Y. Mol. Cell. Biol. 18, 4377–4384 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Qin, X.Q., Chittenden, T., Livingston, D. & Kaelin, W.G. Identification of a growth suppression domain within the retinoblastoma gene product. Genes Dev. 6, 953–964 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Barna, C. Chomienne, T. Delohery, G.P. Dotto, M. Fagioli, P.S. Freemont, F. Grosveld, L. Longo, L. Luzzatto, T. Miki, P.G. Pelicci, V. Richon, P. Sassone-Corsi, K. Scotto, A. Simeone and E. Singh for help, materials and advice. Partially supported by the "Ligue Nationale contre le Cancer" of France (L.D.) and the American-Italian Cancer Foundation (D.G.). P.P.P. is a scholar of the Leukemia Society of America. Supported by the NCI (CA-08748) and NIH (CA71692 and CA74031 to P.P.P.) and the Human Frontiers Science Program (to C.R. and L.P.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Paolo Pandolfi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, S., Delva, L., Rachez, C. et al. A RA-dependent, tumour-growth suppressive transcription complex is the target of the PML-RARα and T18 oncoproteins. Nat Genet 23, 287–295 (1999). https://doi.org/10.1038/15463

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/15463

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing