Skip to main content
Research Article

Impairment of Shooting Performance by Background Complexity and Motion

Published Online:https://doi.org/10.1027/1618-3169/a000277

In many visual displays such as virtual environments, human tasks involve objects superimposed on both complex and moving backgrounds. However, most studies investigated the influence of background complexity or background motion in isolation. Two experiments were designed to investigate the joint influences of background complexity and lateral motion on a simple shooting task typical of video games. Participants had to perform the task on the moving and static versions of backgrounds of three levels of complexity, while their eye movements were recorded. The backgrounds displayed either an abstract (Experiment 1) or a naturalistic (Experiment 2) virtual environment. The results showed that performance was impaired by background motion in both experiments. The effects of motion and complexity were additive for the abstract background and multiplicative for the naturalistic background. Eye movement recordings showed that performance impairments reflected at least in part the impact of the background visual features on gaze control.

References

  • Asher, M. F., Tolhurst, D. J., Troscianko, T., & Gilchrist, I. D. (2013). Regional effects of clutter on human target detection performance. Journal of Vision, 13, 1–15. doi: 10.1167/13.5.25 First citation in articleCrossrefGoogle Scholar

  • Beck, M. R., Lohrenz, M. C., & Trafton, J. G. (2010). Measuring search efficiency in complex visual search tasks: Global and local clutter. Journal of Experimental Psychology: Applied, 16, 238–250. doi: 10.1037/a0019633 First citation in articleCrossrefGoogle Scholar

  • Berger, C., Winkels, M., Lischke, A., & Höppner, J. (2012). GazeAlyze: A MATLAB toolbox for the analysis of eye movement data. Behavior Research Methods, 44, 404–419. doi: 10.3758/s13428-011-0149-x First citation in articleCrossrefGoogle Scholar

  • Caroux, L., Le Bigot, L., & Vibert, N. (2013). Impact of the motion and visual complexity of the background on players’ performance in video game-like displays. Ergonomics, 56, 1863–1876. doi: 10.1080/00140139.2013.847214 First citation in articleCrossrefGoogle Scholar

  • Chen, X., & Hegdé, J. (2012). Learning to break camouflage by learning the background. Psychological Science, 23, 1395–1403. doi: 10.1177/0956797612445315 First citation in articleCrossrefGoogle Scholar

  • De Vries, J. P., Hooge, I. T. C., Wertheim, A. H., & Verstraten, F. A. J. (2013). Background, an important factor in visual search. Vision Research, 86, 128–138. doi: 10.1016/j.visres.2013.04.010 First citation in articleCrossrefGoogle Scholar

  • Harrison, W. J., Thompson, M. B., & Sanderson, P. M. (2010). Multisensory integration with a head-mounted display: Background visual motion and sound motion. Human Factors, 52, 78–91. doi: 10.1177/0018720810367790 First citation in articleCrossrefGoogle Scholar

  • Henderson, J. M., Chanceaux, M., & Smith, T. J. (2009). The influence of clutter on real-world scene search: Evidence from search efficiency and eye movements. Journal of Vision, 9, 1–8. doi: 10.1167/9.1.32 First citation in articleCrossrefGoogle Scholar

  • Honda, H. (2001). Visual mislocalisation induced by translational and radial background motion. Perception, 30, 935–944. doi: 10.1068/p3132 First citation in articleCrossrefGoogle Scholar

  • Ilg, U. J. (1997). Slow eye movements. Progress in Neurobiology, 53, 293–329. doi: 10.1016/S0301-0082(97)00039-7 First citation in articleCrossrefGoogle Scholar

  • Itti, L., & Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research, 40, 1489–1506. doi: 10.1016/S0042-6989(99)00163-7 First citation in articleCrossrefGoogle Scholar

  • Jie, L., & Clark, J. J. (2008). Video game design using an eye-movement-dependent model of visual attention. ACM Transactions on Multimedia Computing Communications and Applications, 4, 1–16. doi: 10.1145/1386109.1386115 First citation in articleCrossrefGoogle Scholar

  • Kaminiarz, A., Krekelberg, B., & Bremmer, F. (2007). Localization of visual targets during optokinetic eye movements. Vision Research, 47, 869–878. doi: 10.1016/j.visres.2006.10.015 First citation in articleCrossrefGoogle Scholar

  • Kim, J., & Palmisano, S. (2010). Eccentric gaze dynamics enhance vection in depth. Journal of Vision, 10, 1–11. doi: 10.1167/10.12.7 First citation in articleCrossrefGoogle Scholar

  • Neider, M. B., & Zelinsky, G. J. (2011). Cutting through the clutter: Searching for targets in evolving complex scenes. Journal of Vision, 11, 1–16. doi: 10.1167/11.14.7 First citation in articleCrossrefGoogle Scholar

  • Rayner, K. (2009). Eye movements and attention in reading, scene perception, and visual search. The Quarterly Journal of Experimental Psychology, 62, 1457–1506. doi: 10.1080/17470210902816461 First citation in articleCrossrefGoogle Scholar

  • Riecke, B. E., Schulte-Pelkum, J., Avraamides, M. N., Von Der Heyde, M., & Bülthoff, H. H. (2006). Cognitive factors can influence self-motion perception (vection) in virtual reality. ACM Transactions on Applied Perception, 3, 194–216. doi: 10.1145/1166087.1166091 First citation in articleCrossrefGoogle Scholar

  • Tozzi, A., Morrone, M. C., & Burr, D. C. (2007). The effect of optokinetic nystagmus on the perceived position of briefly flashed targets. Vision Research, 47, 861–868. doi: 10.1016/j.visres.2006.10.022 First citation in articleCrossrefGoogle Scholar

  • Trutoiu, L. C., Mohler, B. J., Schulte-Pelkum, J., & Bülthoff, H. H. (2009). Circular, linear, and curvilinear vection in a large-screen virtual environment with floor projection. Computers & Graphics, 33, 47–58. doi: 10.1016/j.cag.2008.11.008 First citation in articleCrossrefGoogle Scholar

  • Waespe, W., & Schwarz, U. (1987). Slow eye movements induced by apparent target motion in monkey. Experimental Brain Research, 67, 433–435. doi: 10.1007/bf00248564 First citation in articleCrossrefGoogle Scholar

  • Walther, D., & Koch, C. (2006). Modeling attention to salient proto-objects. Neural Networks, 19, 1395–1407. doi: 10.1016/j.neunet.2006.10.001 First citation in articleCrossrefGoogle Scholar

  • Wolfe, J. M. (1994). Guided Search 2.0: A revised model of visual search. Psychonomic Bulletin & Review, 1, 202–238. doi: 10.3758/bf03200774 First citation in articleCrossrefGoogle Scholar

  • Wolfe, J. M., Oliva, A., Horowitz, T. S., Butcher, S. J., & Bompas, A. (2002). Segmentation of objects from backgrounds in visual search tasks. Vision Research, 42, 2985–3004. doi: 10.1016/S0042-6989(02)00388-7 First citation in articleCrossrefGoogle Scholar