Skip to main content
Articles

Evidence for an Integrative Role of P3b in Linking Reaction to Perception

Published Online:https://doi.org/10.1027/0269-8803.19.3.165

Abstract. Hypotheses about the P3 component of the event-related EEG potential have usually assumed that P3b reflects some processing independent from organizing the response. In contrast, the notion that P3b is related to a decision process implies some mediating function between stimulus and response. If P3b does indeed reflect the link between perceptual processing and response preparation (1) amplitudes should be as large in response-locked averages as in stimulus-locked averages, (2) this should be true independent of response speed, for separate subaverages of slow and fast responses, and (3) latencies should vary across response speed both in stimulus-locked and in response-locked averages. These hypotheses were tested in data evoked by visual and auditory stimuli in choice-response tasks. All three predictions were confirmed. In contrast to this balanced relation to perception and responding, fronto-central P3 with auditory stimuli was stimulus-related and, for comparison, the peak amplitudes of both the response-force and of the lateralized readiness potential were response-related. We conclude that P3b reflects a process that mediates between perceptual analysis and response initiation, possibly monitoring whether the decision to classify some stimulus is appropriately transformed into action.

References

  • Baldwin, K.B. , Kutas, M. (1997). An ERP analysis of implicit structured sequence learning. Psychophysiology, 34, 74– 86 First citation in articleCrossrefGoogle Scholar

  • Baudena, P. , Halgren, E. , Heit, G. , Clarke, J.M. (1995). Intracerebral potentials to rare target and distractor auditory and visual stimuli. III. Frontal cortex. Electroencephalography and Clinical Neurophysiology, 94, 251– 264 First citation in articleCrossrefGoogle Scholar

  • Brázdil, M. , Rektor, I. , Daniel, P. , Dufek, M. , Jurák, P. (2001). Intracerebral event-related potentials to subthreshold target stimuli. Clinical Neurophysiology, 112, 650– 661 First citation in articleCrossrefGoogle Scholar

  • Clarke, J.M. , Halgren, E. , Chauvel, P. (1999). Intracranial ERPs in humans during a lateralized visual oddball task: II. Temporal, parietal, and frontal recordings. Clinical Neurophysiology, 110, 1226– 1244 First citation in articleCrossrefGoogle Scholar

  • Comerchero, M.D. , Polich, J. (1999). P3a and P3b from typical auditory and visual stimuli. Clinical Neurophysiology, 110, 24– 30 First citation in articleCrossrefGoogle Scholar

  • Croft, R.J. , Gonsalvez, C.J. , Gabriel, C. , Barry, R.J. (2003). Target-to-target interval versus probability effects on P300 in one- and two-tone tasks. Psychophysiology, 40, 322– 328 First citation in articleCrossrefGoogle Scholar

  • De Jong, R. (1993). Multiple bottlenecks in overlapping task performance. Journal of Experimental Psychology: Human Perception and Performance, 19, 965– 980 First citation in articleCrossrefGoogle Scholar

  • Donchin, E. (1981). Surprise! ... Surprise?. Psychophysiology, 18, 493– 513 First citation in articleCrossrefGoogle Scholar

  • Donchin, E. , Coles, M.G.H. (1988). Is the P300 component a manifestation of context updating?. Behavioral and Brain Sciences, 11, 357– 374 First citation in articleCrossrefGoogle Scholar

  • Downes, J.J. , Sharp, H.M. , Costall, B.M. , Sagar, H.J. , Howe, J. (1993). Alternating fluency in Parkinson's disease. Brain, 116, 887– 902 First citation in articleCrossrefGoogle Scholar

  • Driver, J. , Vuilleumier, P. (2001). Perceptual awareness and its loss in unilateral neglect and extinction. Cognition, 79, 39– 88 First citation in articleCrossrefGoogle Scholar

  • Duncan-Johnson, C.C. , Donchin, E. (1977). On quantifying surprise: The variation of event-related potentials with subjective probability. Psychophysiology, 14, 456– 467 First citation in articleCrossrefGoogle Scholar

  • Eichenbaum, H. (2000). A cortical-hippocampal system for declarative memory. Nature Reviews: Neuroscience, 1, 41– 50 First citation in articleCrossrefGoogle Scholar

  • Falkenstein, M. , Hohnsbein, J. , Hoormann, J. (1994a). Time pressure effects on late components of the event-related potential. Journal of Psychophysiology, 8, 22– 30 First citation in articleGoogle Scholar

  • Falkenstein, M. , Hohnsbein, J. , Hoormann, J. (1994). Effects of choice complexity on different subcomponents of the late positive complex of the event-related potential. Electroencephalography and Clinical Neurophysiology, 92, 148– 160 First citation in articleCrossrefGoogle Scholar

  • Falkenstein, M. , Hoormann, J. , Christ, S. , Hohnsbein, J. (2000). ERP components on reaction errors and their functional significance: A tutorial. Biological Psychology, 51, 87– 107 First citation in articleCrossrefGoogle Scholar

  • Finnigan, S. , Humphreys, M.S. , Dennis, S. , Geffen, G. (2002). ERP ‘old/new' effects: Memory strength and decisional factor(s). Neuropsychologia, 40, 2288– 2304 First citation in articleCrossrefGoogle Scholar

  • Ford, J.M. , Sullivan, E.V. , Marsh, L. , White, P.M. , Lim, K.O. , Pfefferbaum, A. (1994). The relationship between P300 amplitude and regional gray matter volumes depends upon the attentional system engaged. Electroencephalography and Clinical Neurophysiology, 90, 214– 228 First citation in articleCrossrefGoogle Scholar

  • Friedman, D. (1984). P300 and slow wave: The effects of reaction time quartile. Biological Psychology, 18, 49– 71 First citation in articleCrossrefGoogle Scholar

  • Frith, C.D. , Done, D.J. (1986). Routes to action in reaction time tasks. Psychological Research, 48, 169– 177 First citation in articleCrossrefGoogle Scholar

  • Gaeta, H. , Friedman, D. , Hunt, G. (2003). Stimulus characteristics and task category dissociate the anterior and posterior aspects of novelty P3. Psychophysiology, 40, 198– 208 First citation in articleCrossrefGoogle Scholar

  • Gilbert, P.F.C. (2001). An outline of brain function. Cognitive Brain Research, 12, 61– 74 First citation in articleCrossrefGoogle Scholar

  • Giray, M. , Ulrich, R. (1993). Motor coactivation revealed by response force in divided and focused attention. Journal of Experimental Psychology: Human Perception and Performance, 19, 1278– 1291 First citation in articleCrossrefGoogle Scholar

  • Halgren, E. (1988). The P3: A view from the brain. Behavioral and Brain Sciences, 11, 383– 385 First citation in articleCrossrefGoogle Scholar

  • Halgren, E. , Squires, N.K. , Wilson, C.L. , Rohrbaugh, J.W. , Babb, T.L. , Crandall, P.H. (1980). Endogenous potentials generated in the human hippocampal formation and amygdala by infrequent events. Science, 210, 803– 805 First citation in articleCrossrefGoogle Scholar

  • Halgren, E. , Baudena, P. , Clarke, J.M. , Heit, G. , Liégeois, C. , Chauvel, P. , Musolino, A. (1995). Intracerebral potentials to rare target and distractor auditory and visual stimuli. I. Superior temporal plane and parietal lobe. Electroencephalography and Clinical Neurophysiology, 94, 191– 220 First citation in articleCrossrefGoogle Scholar

  • Halgren, E. , Baudena, P. , Clarke, J.M. , Heit, G. , Marinkovic, K. , Devaux, B. , Vignal, J.-P. , Biraben, A. (1995). Intracerebral potentials to rare target and distractor auditory and visual stimuli. II. Medial, lateral, and posterior temporal lobe. Electroencephalography and Clinical Neurophysiology, 94, 229– 250 First citation in articleCrossrefGoogle Scholar

  • Hohnsbein, J. , Falkenstein, M. , Hoormann, J. , Blanke, L. (1991). Effects of crossmodal divided attention on late ERP components. I. Simple and choice reaction tasks. Electroencephalography and Clinical Neurophysiology, 78, 438– 446 First citation in articleCrossrefGoogle Scholar

  • Jaśkowski, P. , Verleger, R. (1993). A clock paradigm to study the relationship between expectancy and response force. Perceptual and Motor Skills, 77, 163– 174 First citation in articleCrossrefGoogle Scholar

  • Jaśkowski, P. , van der Lubbe, R.H.J. , Wauschkuhn, B. , Wascher, E. , Verleger, R. (2000). The influence of time pressure and cue validity on response force in an S1-S2 paradigm. Acta Psychologica, 105, 89– 105 First citation in articleCrossrefGoogle Scholar

  • Johnson, R. (1988). The amplitude of the P300 component of the event-related potential: Review and synthesis. In P.K. Ackles, J.R. Jennings, & M.G.H. Coles (Eds.), Advances in psychophysiology, Volume III(pp.69-138). Greenwich, CT: JAI Press First citation in articleGoogle Scholar

  • Johnson, R. , Barnhardt, J. , Zhu, J. (2003). The deceptive response: Effects of response conflict and strategic monitoring on the late positive component and episodic memory-related brain activity. Biological Psychology, 64, 217– 253 First citation in articleCrossrefGoogle Scholar

  • Kaipio, M.-L. , Cheour, M. , Čeponienë, R. , Öhman, J. , Alku, P. , Näätänen, R. (2000). Increased distractibility in closed head injury as revealed by event-related potentials. NeuroReport, 11, 1463– 1468 First citation in articleGoogle Scholar

  • Kerkhoff, G. (2001). Spatial neglect in humans. Progress in Neurobiology, 63, 1– 27 First citation in articleCrossrefGoogle Scholar

  • Knight, R.T. (1996). Contribution of human hippocampal region to novelty detection. Nature, 383, 256– 259 First citation in articleCrossrefGoogle Scholar

  • Koivisto, M. , Revonsuo, A. (2003). An ERP study of change detection, change blindness, and visual awareness. Psychophysiology, 40, 423– 429 First citation in articleCrossrefGoogle Scholar

  • Kolev, V. , Demiralp, T. , Yordanova, J. , Ademoglu, A. , Isoglu-Alkaç, Ü. (1997). Time-frequency analysis reveals multiple functional components during oddball P300. Neuroreport, 8, 2061– 2065 First citation in articleCrossrefGoogle Scholar

  • Kornmeier, J. , Bach, M. (2003). Early neural activity in Necker-cube reversal: Evidence for low-level processing of a gestalt phenomenon. Psychophysiology, 41, 1– 8 First citation in articleCrossrefGoogle Scholar

  • Kotchoubey, B. (2002). Do event-related brain potentials reflect mental (cognitive) operations?. Journal of Psychophysiology, 16, 129– 149 First citation in articleLinkGoogle Scholar

  • Kotchoubey, B. , Grözinger, B. , Kornhuber, A.W. , Kornhuber, H.H. (1997). Electrophysiological analysis of expectancy: P3 in informed guessing. International Journal of Neuroscience, 91, 105– 122 First citation in articleCrossrefGoogle Scholar

  • Kropotov, J.D. , Ponomarev, V.A. (1991). Subcortical neuronal correlates of component P300 in man. Electroencephalography and Clinical Neurophysiology, 78, 40– 49 First citation in articleCrossrefGoogle Scholar

  • Kutas, M. , McCarthy, G. , Donchin, E. (1977). Augmenting mental chronometry: The P300 as a measure of stimulus evaluation time. Science, 197, 792– 795 First citation in articleCrossrefGoogle Scholar

  • Masaki, H. , Takasawa, N. , Yamazaki, K. (2000). An electrophysiological study of the locus of the interference effect in a stimulus-response compatibility paradigm. Psychophysiology, 37, 464– 472 First citation in articleCrossrefGoogle Scholar

  • Matt, J. , Leuthold, H. , Sommer, W. (1992). Differential effects of voluntary expectancies on reaction times and event-related potentials: Evidence for automatic and controlled expectancies. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 810– 822 First citation in articleCrossrefGoogle Scholar

  • Näätänen, R. , Winkler, I. (1999). The concept of auditory stimulus representation in cognitive neuroscience. Psychological Bulletin, 125, 826– 859 First citation in articleCrossrefGoogle Scholar

  • Rektor, I. , Bareš, M. , Kanovský, P. , Brázdil, M. , Klajblová, H. , Streitová, H. , Rektorová, I. , Sochùrková, D. , Kubová, D. , Kuba, R. , Daniel, P. (2004). Cognitive potentials in the basal ganglia - frontocortical circuits. An intracerebral recording study. Experimental Brain Research, 158, 289– 301 First citation in articleCrossrefGoogle Scholar

  • Roche, R.A.P. , O'Mara, S.M. (2003). Behavioral and electrophysiological correlates of visuomotor learning during a visual search task. Cognitive Brain Research, 15, 127– 136 First citation in articleCrossrefGoogle Scholar

  • Rösler, F. , Borgstedt, J. , Sojka, B. (1985). When perceptual or motor sets are changed: Effects of updating demands on structure and energy of P300. Acta Psychologica, 60, 293– 321 First citation in articleCrossrefGoogle Scholar

  • Roth, W.T. , Ford, J.M. , Kopell, B.S. (1978). Long-latency evoked potentials and reaction time. Psychophysiology, 15, 17– 23 First citation in articleCrossrefGoogle Scholar

  • Ruchkin, D.S. , Sutton, S. (1978). Equivocation and P300 amplitude. In D. Otto (Ed.), Multidisciplinary perspectives in event-related brain potential research (pp.175-177). Washington, DC: U.S. Government Printing Office First citation in articleGoogle Scholar

  • Schröger, E. , Wolff, C. (1998). Behavioral and electrophysiological effects of task-irrelevant sound change: A new distraction paradigm. Cognitive Brain Research, 7, 71– 87 First citation in articleCrossrefGoogle Scholar

  • Sitnikova, T. , Kuperberg, G. , Holcomb, P.J. (2003). Semantic integration in videos of real-word events: An electrophysiological investigation. Psychophysiology, 40, 160– 164 First citation in articleCrossrefGoogle Scholar

  • Smulders, F.T.Y. , Kok, A. , Kenemans, J.L. , Bashore, T.R. (1995). The temporal selectivity of additive factor effects on the reaction process revealed in ERP component latencies. Acta Psychologica, 90, 97– 109 First citation in articleCrossrefGoogle Scholar

  • Sommer, W. , Matt, J. , Leuthold, H. (1990). Consciousness of attention and expectancy as reflected in event-related potentials and reaction times. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 902– 915 First citation in articleGoogle Scholar

  • Spencer, K.M. , Dien, J. , Donchin, E. (1999). A componential analysis of the ERP elicited by novel events using a dense electrode array. Psychophysiology, 36, 409– 414 First citation in articleCrossrefGoogle Scholar

  • Squires, K.C. , Hillyard, S.A. , Lindsay, P.H. (1973). Vertex potentials evoked during auditory signal detection: Relation to decision criteria. Perception and Psychophysics, 14, 265– 272 First citation in articleCrossrefGoogle Scholar

  • Squires, N.K. , Squires, K.C. , Hillyard, S.A. (1975). Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalography and Clinical Neurophysiology, 38, 387– 401 First citation in articleCrossrefGoogle Scholar

  • Sutton, S. , Braren, M. , Zubin, J. , John, E.R. (1965). Evoked-potential correlates of stimulus uncertainty. Science, 150, 1187– 1188 First citation in articleCrossrefGoogle Scholar

  • Urbach, T.P. , Kutas, M. (2002). The intractability of scaling scalp distributions to infer neuroelectrical sources. Psychophysiology, 39, 791– 808 First citation in articleCrossrefGoogle Scholar

  • Velasco, M. , Velasco, F. , Velasco, A.L. , Almanza, X. , Olvera, A. (1986). Subcortical correlates of the P300 potential complex in man to auditory stimuli. Electroencephalography and Clinical Neurophysiology, 64, 199– 210 First citation in articleCrossrefGoogle Scholar

  • Verleger, R. (1988). Event-related potentials and cognition: A critique of the context updating hypothesis and an alternative interpretation of P3. Behavioral and Brain Sciences, 11, 343– 356 First citation in articleGoogle Scholar

  • Verleger, R. (1997). On the utility of P3 latency as an index of mental chronometry. Psychophysiology, 34, 131– 156 First citation in articleCrossrefGoogle Scholar

  • Verleger, R. , Cohen, R. (1978). Effects of certainty, modality shift, and guess outcome on evoked potentials and reaction times in chronic schizophrenics. Psychological Medicine, 8, 81– 93 First citation in articleCrossrefGoogle Scholar

  • Verleger, R. , Hopmann, G. (1989). When things get exciting: Is P3 modulated by background suspense-related negativity?. Journal of Psychophysiology, 3, 269– 279 First citation in articleGoogle Scholar

  • Verleger, R. , Gasser, T. , Möcks, J. (1982). Correction of EOG artifacts in event related potentials of the EEG: Aspects of reliability and validity. Psychophysiology, 19, 472– 480 First citation in articleCrossrefGoogle Scholar

  • Verleger, R. , Gasser, T. , Möcks, J. (1985). Short-term changes of event-related potentials during concept learning. Biological Psychology, 20, 1– 16 First citation in articleCrossrefGoogle Scholar

  • Verleger, R. , Heide, W. , Butt, C. , Kömpf, D. (1994a). Reduction of P3b in patients with temporo-parietal lesions. Cognitive Brain Research, 2, 103– 116 First citation in articleCrossrefGoogle Scholar

  • Verleger, R. , Jaskowski, P. , Wauschkuhn, B. (1994b). Suspense and surprise: On the relationship between expectancies and P3. Psychophysiology, 31, 359– 369 First citation in articleCrossrefGoogle Scholar

  • Wascher, E. , Schatz, U. , Kuder, T. , Verleger, R. (2001). Validity and boundary conditions of automatic response activation in the Simon task. Journal of Experimental Psychology: Human Perception and Performance, 27, 731– 751 First citation in articleCrossrefGoogle Scholar

  • Wood, C.C. , McCarthy, G. , Squires, N.K. , Vaughan, H.G. , Woods, D.L. , McCallum, W.C. (1984). Anatomical and physiological substrates of event-related potentials: Two case studies. In R. Karrer, J. Cohen, & P. Tueting (Eds.),Brain and information: Event related potentials(pp.681-721). New York: The NY Academy of Sciences First citation in articleGoogle Scholar

  • Yamaguchi, S. , Knight, R.T. (1991). Anterior and posterior association cortex contributions to the somatosensory P300. The Journal of Neuroscience, 11, 2039– 2054 First citation in articleGoogle Scholar

  • Yingling, C.D. , Hosobuchi, Y. (1984). A subcortical correlate of P300 in man. Electroencephalography and Clinical Neurophysiology, 59, 72– 76 First citation in articleCrossrefGoogle Scholar

  • Yordanova, J. , Kolev, V. (1998). Phase-locking of event-related EEG oscillations: Analysis and applications. Applied Signal Processing, 5, 24– 33 First citation in articleCrossrefGoogle Scholar