Skip to main content
Original Communication

Maximal dose-response of vitamin-K2 (menaquinone-4) on undercarboxylated osteocalcin in women with osteoporosis

Published Online:https://doi.org/10.1024/0300-9831/a000554

Abstract. Low concentrations of serum vitamin K accompany high concentrations of undercarboxylated osteocalcin (ucOC) and osteoporotic fractures. Although vitamin K2 (MK-4) is approved as a therapeutic agent for the treatment of osteoporosis in some countries, the dose-response is unknown. The objective of this study was to assess the improvement in carboxylation of osteocalcin (OC) in response to escalating doses of MK-4 supplementation. A nine-week, open-labeled, prospective cohort study was conducted in 29 postmenopausal women who suffered hip or vertebral compression fractures. Participants took low-dose MK-4 (0.5 mg) for 3 weeks (until the second visit), then medium-dose MK-4 (5 mg) for 3 weeks (until the third visit), then high-dose MK-4 (45 mg) for 3 weeks. The mean ± SD age of the participants was 69 ± 9 years. MK-4 dose (p < 0.0001), but neither age nor other relevant medications (e.g. bisphosphonates) correlated with improvement in %ucOC. As compared to baseline concentrations (geometric mean ± SD) of 16.8 ± 2.4, 0.5 mg supplementation halved %ucOC to 8.7 ± 2.2 (p < 0.0001) and the 5-mg dose halved %ucOC again (to 3.9 ± 2.2; p = 0.0002 compared to 0.5-mg dose). However, compared to 5 mg/day, there was no additional benefit of 45 mg/day (%ucOC 4.6; p = NS vs. 5-mg dose). MK-4 supplementation resulted in borderline increases in γ-carboxylated osteocalcin (glaOC; p = 0.07). There were no major side effects of MK-4 supplementation. In postmenopausal women with osteoporotic fractures, supplementation with either 5 or 45 mg/day of MK-4 reduces ucOC to concentrations typical of healthy, pre-menopausal women.

References

  • 1 Melton, L.J. 3rd (1995) How many women have osteoporosis now? J Bone Miner Res. 10, 175–7. First citation in articleCrossref MedlineGoogle Scholar

  • 2 Nevitt, M.C., Ettinger, B., Black, D.M., Stone, K., Jamal, S.A., Ensrud, K., Segal, M., Genant, H.K., & Cummings, S.R. (1998) The association of radiographically detected vertebral fractures with back pain and function: a prospective study. Ann Intern Med. 128, 793–800. First citation in articleCrossref MedlineGoogle Scholar

  • 3 Braithwaite, R.S., Col, N.F., & Wong, J.B. (2003) Estimating hip fracture morbidity, mortality and costs. J Am Geriatr Soc. 51, 364–70. First citation in articleCrossref MedlineGoogle Scholar

  • 4 Budhia, S., Mikyas, Y., Tang, M., & Badamgarav, E. (2012) Osteoporotic fractures: a systematic review of U.S. healthcare costs and resource utilization. Pharmacoeconomics. 30, 147–70. First citation in articleCrossref MedlineGoogle Scholar

  • 5 Hulley, S., Grady, D., Bush, T., Furberg, C., Herrington, D., Riggs, B., & Vittinghoff, E. (1998) Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. JAMA. 280, 605–13. First citation in articleCrossref MedlineGoogle Scholar

  • 6 Rossouw, J.E., Anderson, G.L., Prentice, R.L., LaCroix, A.Z., Kooperberg, C., Stefanick, M.L., Jackson, R.D., Beresford, S.A., Howard, B.V., Johnson, K.C., Kotchen, J.M., & Ockene, J. (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. JAMA. 288, 321–33. First citation in articleCrossref MedlineGoogle Scholar

  • 7 Burger, H.G., MacLennan, A.H., Huang, K.E., & Castelo-Branco, C. (2012) Evidence-based assessment of the impact of the WHI on women’s health. J of Int Menopause Soc. 15, 281–7. First citation in articleMedlineGoogle Scholar

  • 8 Booth, S.L., Tucker, K.L., Chen, H., Hannan, M.T., Gagnon, D.R., Cupples, L.A., Wilson, P.W., Ordovas, J., Schaefer, E.J., Dawson-Hughes, B., & Kiel, D.P. (2000) Dietary vitamin K intakes are associated with hip fracture but not with bone mineral density in elderly men and women. Am J Clin Nutr. 71, 1201–8. First citation in articleCrossref MedlineGoogle Scholar

  • 9 Booth, S.L., Broe, K.E., Peterson, J.W., Cheng, D.M., Dawson-Hughes, B., Gundberg, C.M., Cupples, L.A., Wilson, P.W., & Kiel, D.P. (2004) Associations between vitamin K biochemical measures and bone mineral density in men and women. J Clin Endocrinol Metab. 89, 4904–9. First citation in articleCrossref MedlineGoogle Scholar

  • 10 Kanai, T., Takagi, T., Masuhiro, K., Nakamura, M., Iwata, M., & Saji, F. (1997) Serum vitamin K level and bone mineral density in post-menopausal women. Int J Gynaecol Obstet. 56, 25–30. First citation in articleCrossref MedlineGoogle Scholar

  • 11 Hodges, S.J., Akesson, K., Vergnaud, P., Obrant, K., & Delmas, P.D. (1993) Circulating levels of vitamins K1 and K2 decreased in elderly women with hip fracture. J Bone Miner Res. 8, 1241–5. First citation in articleCrossref MedlineGoogle Scholar

  • 12 Feskanich, D., Weber, P., Willett, W.C., Rockett, H., Booth, S.L., & Colditz, G.A. (1999) Vitamin K intake and hip fractures in women: a prospective study. Am J Clin Nutr. 69, 74–9. First citation in articleCrossref MedlineGoogle Scholar

  • 13 Hauschka, P.V., Lian, J.B., Cole, D.E., & Gundberg, C.M. (1989) Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev. 69, 990–1047. First citation in articleCrossref MedlineGoogle Scholar

  • 14 Delmas, P.D. (1993) Biochemical markers of bone turnover. I: Theoretical considerations and clinical use in osteoporosis. Am J Med. 95, 11S–16S. First citation in articleCrossref MedlineGoogle Scholar

  • 15 Suttie, J.W. (1985) Vitamin K-dependent carboxylase. Annu Rev Biochem. 54, 459–77. First citation in articleCrossref MedlineGoogle Scholar

  • 16 Gundberg, C.M., Nieman, S.D., Abrams, S., & Rosen, H. (1998) Vitamin K status and bone health: an analysis of methods for determination of undercarboxylated osteocalcin. J Clin Endocrinol Metab. 83, 3258–66. First citation in articleMedlineGoogle Scholar

  • 17 Szulc, P., Arlot, M., Chapuy, M.C., Duboeuf, F., Meunier, P.J., & Delmas, P.D. (1994) Serum undercarboxylated osteocalcin correlates with hip bone mineral density in elderly women. J Bone Miner Res. 9, 1591–5. First citation in articleCrossref MedlineGoogle Scholar

  • 18 Jie, K.G., Bots, M.L., Vermeer, C., Witteman, J.C., & Grobbee, D.E. (1996) Vitamin K status and bone mass in women with and without aortic atherosclerosis: a population-based study. Calcif Tissue Int. 59, 352–6. First citation in articleCrossref MedlineGoogle Scholar

  • 19 Szulc, P., Chapuy, M.C., Meunier, P.J., & Delmas, P.D. (1993) Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture in elderly women. J Clin Invest. 91, 1769–74. First citation in articleCrossref MedlineGoogle Scholar

  • 20 Szulc, P., Chapuy, M.C., Meunier, P.J., & Delmas, P.D. (1996) Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture: a three year follow-up study. Bone. 18, 487–8. First citation in articleCrossref MedlineGoogle Scholar

  • 21 Kohlmeier, M., Saupe, J., Shearer, M.J., Schaefer, K., & Asmus, G. (1997) Bone health of adult hemodialysis patients is related to vitamin K status. Kidney Int. 51, 1218–21. First citation in articleCrossref MedlineGoogle Scholar

  • 22 Vergnaud, P., Garnero, P., Meunier, P.J., Breart, G., Kamihagi, K., & Delmas, P.D. (1997) Undercarboxylated osteocalcin measured with a specific immunoassay predicts hip fracture in elderly women: the EPIDOS Study. J Clin Endocrinol Metab. 82, 719–24. First citation in articleMedlineGoogle Scholar

  • 23 Binkley, N.C., Krueger, D.C., Kawahara, T.N., Engelke, J.A., Chappell, R.J., & Suttie, J.W. (2002) A high phylloquinone intake is required to achieve maximal osteocalcin gamma-carboxylation. Am J Clin Nutr. 76, 1055–60. First citation in articleCrossref MedlineGoogle Scholar

  • 24 Shiraki, M., Shiraki, Y., Aoki, C., & Miura, M. (2000) Vitamin K2 (menatetrenone) effectively prevents fractures and sustains lumbar bone mineral density in osteoporosis. J Bone Miner Res. 15, 515–21. First citation in articleCrossref MedlineGoogle Scholar

  • 25 Ozuru, R., Sugimoto, T., Yamaguchi, T., & Chihara, K. (2002) Time-dependent effects of vitamin K2 (menatetrenone) on bone metabolism in postmenopausal women. Endocr J. 49, 363–70. First citation in articleCrossref MedlineGoogle Scholar

  • 26 Knapen, M.H., Nieuwenhuijzen Kruseman, A.C., Wouters, R.S., & Vermeer, C. (1998) Correlation of serum osteocalcin fractions with bone mineral density in women during the first 10 years after menopause. Calcif Tissue Int. 63, 375–9. First citation in articleCrossref MedlineGoogle Scholar

  • 27 Knapen, M.H., Jie, K.S., Hamulyak, K., & Vermeer, C. (1993) Vitamin K-induced changes in markers for osteoblast activity and urinary calcium loss. Calcif Tissue Int. 53, 81–5. First citation in articleCrossref MedlineGoogle Scholar

  • 28 Booth, S.L., Martini, L., Peterson, J.W., Saltzman, E., Dallal, G.E., & Wood, R.J. (2003) Dietary phylloquinone depletion and repletion in older women. J Nutr. 133, 2565–9. First citation in articleCrossref MedlineGoogle Scholar

  • 29 Binkley, N.C., Krueger, D.C., Engelke, J.A., Foley, A.L., & Suttie, J.W. (2000) Vitamin K supplementation reduces serum concentrations of under-gamma-carboxylated osteocalcin in healthy young and elderly adults. Am J Clin Nutr. 72, 1523–8. First citation in articleCrossref MedlineGoogle Scholar

  • 30 Miki, T., Nakatsuka, K., Naka, H., Kitatani, K., Saito, S., Masaki, H., Tomiyoshi, Y., Morii, H., & Nishizawa, Y. (2003) Vitamin K(2) (menaquinone 4) reduces serum undercarboxylated osteocalcin level as early as 2 weeks in elderly women with established osteoporosis. J Bone Miner Metab. 21, 161–5. First citation in articleCrossref MedlineGoogle Scholar

  • 31 Koitaya, N., Ezaki, J., Nishimuta, M., Yamauchi, J., Hashizume, E., Morishita, K., Miyachi, M., Sasaki, S., & Ishimi, Y. (2009) Effect of low dose vitamin K2 (MK-4) supplementation on bio-indices in postmenopausal Japanese women. J Nutr Sci Vitaminol (Tokyo). 55, 15–21. First citation in articleCrossref MedlineGoogle Scholar

  • 32 Douglas, A.S., Robins, S.P., Hutchison, J.D., Porter, R.W., Stewart, A., & Reid, D.M. (1995) Carboxylation of osteocalcin in post-menopausal osteoporotic women following vitamin K and D supplementation. Bone. 17, 15–20. First citation in articleCrossref MedlineGoogle Scholar

  • 33 Knapen, M.H., Drummen, N.E., Smit, E., Vermeer, C., & Theuwissen, E. (2013) Three-year low-dose menaquinone-7 supplementation helps decrease bone loss in healthy postmenopausal women. Osteoporos Int. 24, 2499–507. First citation in articleCrossref MedlineGoogle Scholar

  • 34 Sokoll, L.J., Booth, S.L., O’Brien, M.E., Davidson, K.W., Tsaioun, K.I., & Sadowski, J.A. (1997) Changes in serum osteocalcin, plasma phylloquinone, and urinary gamma-carboxyglutamic acid in response to altered intakes of dietary phylloquinone in human subjects. Am J Clin Nutr. 65, 779–84. First citation in articleCrossref MedlineGoogle Scholar

  • 35 Emaus, N., Gjesdal, C.G., Almas, B., Christensen, M., Grimsgaard, A.S., Berntsen, G.K., Salomonsen, L., & Fonnebo, V. (2010) Vitamin K2 supplementation does not influence bone loss in early menopausal women: a randomised double-blind placebo-controlled trial. Osteoporosis International. 21, 1731–40. First citation in articleCrossref MedlineGoogle Scholar

  • 36 Booth, S.L., Dallal, G., Shea, M.K., Gundberg, C., Peterson, J.W., & Dawson-Hughes, B. (2008) Effect of vitamin K supplementation on bone loss in elderly men and women. J Clin Endocrinol Metab. 93, 1217–23. First citation in articleCrossref MedlineGoogle Scholar

  • 37 Cockayne, S., Adamson, J., Lanham-New, S., Shearer, M.J., Gilbody, S., & Torgerson, D.J. (2006) Vitamin K and the prevention of fractures: Systematic review and meta-analysis of randomized controlled trials. Arch Intern Med. 166, 1256–61. First citation in articleCrossref MedlineGoogle Scholar

  • 38 Braam, L.A., Knapen, M.H., Geusens, P., Brouns, F., Hamulyak, K., Gerichhausen, M.J., & Vermeer, C. (2003) Vitamin K1 supplementation retards bone loss in postmenopausal women between 50 and 60 years of age. Calcif Tissue Int. 73, 21–6. First citation in articleCrossref MedlineGoogle Scholar

  • 39 Gundberg, C.M., Lian, J.B., & Booth, S.L. (2012) Vitamin K-dependent carboxylation of osteocalcin: friend or foe? Adv Nutr. 3, 149–57. First citation in articleCrossref MedlineGoogle Scholar

  • 40 Tsugawa, N., Shiraki, M., Suhara, Y., Kamao, M., Tanaka, K., & Okano, T. (2006) Vitamin K status of healthy Japanese women: age-related vitamin K requirement for gamma-carboxylation of osteocalcin. Am J Clin Nutr. 83, 380–6. First citation in articleCrossref MedlineGoogle Scholar

  • 41 Westenfeld, R., Krueger, T., Schlieper, G., Cranenburg, E.C., Magdeleyns, E.J., Heidenreich, S., Holzmann, S., Vermeer, C., Jahnen-Dechent, W., Ketteler, M., Floege, J., & Schurgers, L.J. (2012) Effect of vitamin K2 supplementation on functional vitamin K deficiency in hemodialysis patients: a randomized trial. Am J Kidney Dis. 59, 186–95. First citation in articleCrossref MedlineGoogle Scholar

  • 42 Theuwissen, E., Cranenburg, E.C., Knapen, M.H., Magdeleyns, E.J., Teunissen, K.J., Schurgers, L.J., Smit, E., & Vermeer, C. (2012) Low-dose menaquinone-7 supplementation improved extra-hepatic vitamin K status, but had no effect on thrombin generation in healthy subjects. Br J Nutr. 108, 1652–57. First citation in articleCrossref MedlineGoogle Scholar

  • 43 Sato, Y., Honda, Y., Umeno, K., Hayashida, N., Iwamoto, J., Takeda, T., & Matsumoto, H. (2011) The prevention of hip fracture with menatetrenone and risedronate plus calcium supplementation in elderly patients with Alzheimer disease: a randomized controlled trial. Kurume Med J. 57, 117–24. First citation in articleCrossref MedlineGoogle Scholar

  • 44 Cheung, A.M., Tile, L., Lee, Y., Tomlinson, G., Hawker, G., Scher, J., Hu, H., Vieth, R., Thompson, L., Jamal, S., & Josse, R. (2008) Vitamin K supplementation in postmenopausal women with osteopenia (ECKO trial): a randomized controlled trial. PLoS Medicine. 5, 1–2. First citation in articleGoogle Scholar

  • 45 Binkley, N., Harke, J., Krueger, D., Engelke, J., Vallarta-Ast, N., Gemar, D., Checovich, M., Chappell, R., & Suttie, J. (2009) Vitamin K treatment reduces undercarboxylated osteocalcin but does not alter bone turnover, density, or geometry in healthy postmenopausal North American women. J Bone Miner Res. 24, 983–91. First citation in articleCrossref MedlineGoogle Scholar

  • 46 Tanaka, S., Miyazaki, T., Uemura, Y., Miyakawa, N., Gorai, I., Nakamura, T., Fukunaga, M., Ohashi, Y., Ohta, H., Mori, S., Hagino, H., Hosoi, T., Sugimoto, T., Itoi, E., Orimo, H., & Shiraki, M. (2017) Comparison of concurrent treatment with vitamin K2 and risedronate compared with treatment with risedronate alone in patients with osteoporosis: Japanese Osteoporosis Intervention Trial-03. J Bone Miner Metab. 35, 385–395. First citation in articleCrossref MedlineGoogle Scholar

  • 47 Møller, M., Gjelstad, I.M., Baksaas, I., Grande, T., Aukrust, I.R., & Drevon, C.A. (2016) Bioavailability and Chemical/Functional Aspects of Synthetic MK-7 vs Fermentation-Derived MK-7 in Randomised Controlled Trials. Int J Vitam Nutr Res. 1–15. First citation in articleLinkGoogle Scholar

  • 48 Molitor, H., & Robinson, H.J. (1940) Oral and Parenteral Toxicity of Vitamin K1, Phthiocol and 2 Methyl 1, 4, Naphthoquinone. Exp Biol Med. 43, 125–28. First citation in articleCrossrefGoogle Scholar

  • 49 Anonymous. (2001) Dietary Reference intakes for vitamin A, vitamin K, arsenic boron, chromium, copper, iodine, iron, manganese, molybdenom, nickel, silicon, vanadium, and zinc. Washington, DC: National Academy Press. First citation in articleGoogle Scholar

  • 50 Sato, Y., Kanoko, T., Satoh, K., & Iwamoto, J. (2005) Menatetrenone and vitamin D2 with calcium supplements prevent nonvertebral fracture in elderly women with Alzheimer’s disease. Bone. 36, 61–8. First citation in articleCrossref MedlineGoogle Scholar

  • 51 Inoue, T., Fujita, T., Kishimoto, H., Makino, T., Nakamura, T., Sato, T., & Yamazaki, K. (2009) Randomized controlled study on the prevention of osteoporotic fractures (OF study): a phase IV clinical study of 15-mg menatetrenone capsules. J Bone Mineral Metab. 27, 66–75. First citation in articleCrossref MedlineGoogle Scholar

  • 52 Gage, B.F., Birman-Deych, E., Radford, M.J., Nilasena, D.S., & Binder, E.F. (2006) Risk of osteoporotic fracture in elderly patients taking warfarin: Results from the national registry of atrial fibrillation 2. Arch Intern Med. 166, 241–6. First citation in articleCrossref MedlineGoogle Scholar

  • 53 National Osteoporosis Foundation. Calcium and Vitamin D: What You Need to Know. [cited 2013 Sept 15]; Available from: http://www.nof.org/articles/10 First citation in articleGoogle Scholar

  • 54 Koyama, N., Ohara, K., Yokota, H., Kurome, T., Katayama, M., Hino, F., Kato, I., & Akai, T. (1991) A one step sandwich enzyme immunoassay for gamma-carboxylated osteocalcin using monoclonal antibodies. J Immunol Methods. 139, 17–23. First citation in articleCrossref MedlineGoogle Scholar

  • 55 Buitenhuis, H.C., Soute, B.A., & Vermeer, C. (1990) Comparison of the vitamins K1, K2 and K3 as cofactors for the hepatic vitamin K-dependent carboxylase. Biochim Biophys Acta. 1034, 170–75. First citation in articleCrossref MedlineGoogle Scholar

  • 56 Koshihara, Y., Hoshi, K., Ishibashi, H., & Shiraki, M. (1996) Vitamin K2 promotes 1alpha, 25(OH)2 vitamin D3-induced mineralization in human periosteal osteoblasts. Calcif Tissue Int. 59, 466–73. First citation in articleMedlineGoogle Scholar

  • 57 Schurgers, L.J., & Vermeer, C. (2000) Determination of phylloquinone and menaquinones in food. Effect of food matrix on circulating vitamin K concentrations. Haemostasis. 30, 298–307. First citation in articleMedlineGoogle Scholar

  • 58 Martini, L.A., Booth, S.L., Saltzman, E., a Latorre, M., & Wood, R.J. (2006) Dietary phylloquinone depletion and repletion in postmenopausal women: effects on bone and mineral metabolism. Osteoporos Int. 17, 929–35. First citation in articleCrossref MedlineGoogle Scholar

  • 59 McCabe, K.M., Booth, S.L., Fu, X., Shobeiri, N., Pang, J.J., Adams, M.A., & Holden, R.M. (2013) Dietary vitamin K and therapeutic warfarin alter the susceptibility to vascular calcification in experimental chronic kidney disease. Kidney Int. 83, 835–44. First citation in articleCrossref MedlineGoogle Scholar

  • 60 Sato, T., Schurgers, L.J., & Uenishi, K. (2012) Comparison of menaquinone-4 and menaquinone-7 bioavailability in healthy women. Nutr J. 11(93), 1–4. First citation in articleMedlineGoogle Scholar

  • 61 Knapen, M.H., Schurgers, L.J., & Vermeer, C. (2007) Vitamin K2 supplementation improves hip bone geometry and bone strength indices in postmenopausal women. Osteoporos Int. 18, 963–72. First citation in articleCrossref MedlineGoogle Scholar

  • 62 Ducy, P., Desbois, C., Boyce, B., Pinero, G., Story, B., Dunstan, C., Smith, E., Bonadio, J., Goldstein, S., Gundberg, C., Bradley, A., & Karsenty, G. (1996) Increased bone formation in osteocalcin-deficient mice. Nature. 382, 448–52. First citation in articleCrossref MedlineGoogle Scholar

  • 63 Boskey, A.L., Gadaleta, S., Gundberg, C., Doty, S.B., Ducy, P., & Karsenty, G. (1998) Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone. 23, 187–96. First citation in articleCrossref MedlineGoogle Scholar

  • 64 Fang, Y., Hu, C., Tao, X., Wan, Y., & Tao, F. (2012) Effect of vitamin K on bone mineral density: a meta-analysis of randomized controlled trials. J Bone Miner Metab. 30, 60–8. First citation in articleCrossref MedlineGoogle Scholar