Skip to main content
Original Communication

High-Fat Diet Elevates Liver Docosahexaenoic Acid Possibly through Over-Expression of Very Long-Chain Fatty Acid Elongase 2 in C57BL/6J Mice

Published Online:https://doi.org/10.1024/0300-9831/a000432

Abstract. The liver is the main site of lipid metabolism and vitamin A storage. Dietary factors are known to affect liver function, thereby leading to metabolic abnormalities. Here, we assessed the impact of long-term feeding of a high-fat diet on hepatic vitamin A status and lipid metabolism. For this purpose, 14 male and 14 female 35-day-old mice (strain C57BL/6J) were each divided into 2 groups of 7 animals and fed either a stock diet or a high-fat (HF) diet for 26 weeks. In addition to increased body weight/weight gain, the HF diet induced hypertriglyceridemia in both (p < 0.01). However, liver triglyceride levels were comparable among groups, which could be partly explained by unaltered expression of various lipogenic pathway proteins such as sterol regulatory element binding protein 1 (SREBP1), fatty acid synthase (FAS), microsomal triglyceride transfer protein (MTTP), and glycerol 3-phosphate acyl transferase (GPAT). On the other hand, hepatic retinol stores increased significantly in both sexes, whereas males displayed elevated circulatory retinol levels. Notably, long-term feeding of a HF diet elevated n-3 polyunsaturated fatty acid (PUFA) and docosahexaenoic acid (DHA, C22:6) levels in the liver (p ≤ 0.001), which is in line with the over-expression of very long-chain fatty acid elongase 2 (ELOVL2) protein in both sexes of mice (p < 0.01). In conclusion, very long-term feeding of a HF diet increased hepatic retinol stores and induced hypertriglyceridemia. However, it had no effect on hepatic triglyceride accumulation, possibly due to increased DHA levels arising from the ELOVL2-mediated elongation pathway.

References

  • 1 Fabbrini, E., & Magkos, F. (2015) Hepatic steatosis as a marker of metabolic dysfunction. Nutrients, 7, 4995–5019. First citation in articleCrossref MedlineGoogle Scholar

  • 2 Nseir, W., Hellou, E., & Assy, N. (2014) Role of diet and lifestyle changes in nonalcoholic fatty liver disease. World J Gastroenterol, 20, 9338–9344. First citation in articleMedlineGoogle Scholar

  • 3 Schuppan, D., & Schattenberg, J.M. (2013) Non-alcoholic steatohepatitis: pathogenesis and novel therapeutic approaches. J Gastroenterol Hepatol, 28(Suppl 1), 68–76. First citation in articleCrossref MedlineGoogle Scholar

  • 4 Abd El-Kader, S.M., & El-Den Ashmawy, E.M. (2015) Non-alcoholic fatty liver disease: The diagnosis and management. World J Hepatol, 7, 846–858. First citation in articleCrossref MedlineGoogle Scholar

  • 5 Al Tanoury, Z., Piskunov, A., & Rochette-Egly, C. (2013) Vitamin A and retinoid signaling: genomic and nongenomic effects. J Lip Res, 54, 1761–1775. First citation in articleCrossref MedlineGoogle Scholar

  • 6 Blomhoff, R., Rasmussen, M., Nilsson, A., Norum, K.R., Berg, T., Blaner, W.S., et al.(1985) Hepatic retinol metabolism. Distribution of retinoids, enzymes, and binding proteins in isolated rat liver cells. J Biol Chem, 260, 13560–13565. First citation in articleCrossref MedlineGoogle Scholar

  • 7 Zhao, S., Li, R., Li, Y., Chen, W., Zhang, Y., & Chen, G. (2012) Roles of vitamin A status and retinoids in glucose and fatty acid metabolism. Biochem Cell Biol, 90, 142–152. First citation in articleCrossref MedlineGoogle Scholar

  • 8 Jeyakumar, S.M., & Vajreswari, A. (2015) Vitamin A as a key regulator of obesity & its associated disorders: Evidences from an obese rat model. Ind J Med Res, 141, 275–284. First citation in articleCrossref MedlineGoogle Scholar

  • 9 Vega, V.A., Anzulovich, A.C., Varas, S.M., Bonomi, M.R., Giménez, M.S., & Oliveros, L.B. (2009) Effect of nutritional vitamin A deficiency on lipid metabolism in the rat heart: Its relation to PPAR gene expression. Nutrition, 25, 828–838. First citation in articleCrossref MedlineGoogle Scholar

  • 10 Ramachandran, C.K., Dileepan, K.N., Singh, V., & Venkitasubramanian, T.A. (1975) Effect of excess and deficiency of vitamin A on the utilization of FFA by liver and skeletal muscle. Environ Physiol Biochem, 5, 208–214. First citation in articleMedlineGoogle Scholar

  • 11 Bonet, M.L., Ribot, J., & Palou, A. (2012) Lipid metabolism in mammalian tissues and its control by retinoic acid. Biochim Biophys Acta, 1821, 177–189. First citation in articleCrossref MedlineGoogle Scholar

  • 12 Zhang, Y., Li, R., Li, Y., Chen, W., Zhao, S., & Chen, G. (2012) Vitamin A status affects obesity development and hepatic expression of key genes for fuel metabolism in Zucker fatty rats. Biochem Cell Biol, 90, 548–557. First citation in articleCrossref MedlineGoogle Scholar

  • 13 Jeyakumar, S.M., Vajreswari, A., & Giridharan, N.V. (2008) Vitamin A regulates obesity in WNIN/Ob obese rats; independent of stearoyl CoA desaturase-1. Biochem Biophys Res Commun, 370, 243–247. First citation in articleCrossref MedlineGoogle Scholar

  • 14 Yasmeen, R., Jeyakumar, S.M., Reichert, B., Yang, F., & Ziouzenkova, O. (2012) The contribution of vitamin A to autocrine regulation of fat depots. Biochim Biophys Acta, 1821, 190–197. First citation in articleCrossref MedlineGoogle Scholar

  • 15 Jeyakumar, S.M., Vajreswari, A., & Giridharan, N.V. (2006) Chronic dietary vitamin A supplementation regulates obesity in an obese mutant WNIN/Ob rat model. Obesity (Silver Spring), 14, 52–59. First citation in articleCrossref MedlineGoogle Scholar

  • 16 Jeyakumar, S.M., Lopamudra, P., Padmini, S., Balakrishna, N., Giridharan, N.V., & Vajreswari, A. (2009) Fatty acid desaturation index correlates with body mass and adiposity indices of obesity in Wistar NIN obese mutant rat strains WNIN/Ob and WNIN/GR-Ob. Nutr Metab (Lond), 6, 27. First citation in articleCrossref MedlineGoogle Scholar

  • 17 Jeyakumar, S.M., Prashant, A., Rani, K.S., Laxmi, R., Vani, A., Kumar, P.U., & Vajreswari, A. (2011) Chronic consumption of trans-fat-rich diet increases hepatic cholesterol levels and impairs muscle insulin sensitivity without leading to hepatic steatosis and hypertriglyceridemia in female Fischer rats. Ann Nutr Metab, 58, 272–280. First citation in articleCrossref MedlineGoogle Scholar

  • 18 Passonneau, J.V., & Lauderdale, V.R. (1974) A comparison of three methods of glycogen measurement in tissues. Anal Biochem, 60, 405–412. First citation in articleCrossref MedlineGoogle Scholar

  • 19 Zolfaghari, R., & Ross, A.C. (2003) Recent advances in molecular cloning of fatty acid desaturase genes and the regulation of their expression by dietary vitamin A and retinoic acid. Prostaglandins Leukot Essent Fatty Acids, 68, 171–179. First citation in articleCrossref MedlineGoogle Scholar

  • 20 Ntambi, J.M. (1999) Regulation of stearoyl CoA desaturase1 by polyunsaturated fatty acids and cholesterol. J Lip Res, 40, 1549–1558. First citation in articleCrossref MedlineGoogle Scholar

  • 21 Cho, J., Lee, I., Kim, D., Koh, Y., Kong, J., Lee, S., & Kang, H. (2014) Effect of aerobic exercise training on non-alcoholic fatty liver disease induced by a high fat diet in C57BL/6 mice. J Exerc Nutr Biochem, 18, 339–346. First citation in articleCrossref MedlineGoogle Scholar

  • 22 Mookkan, J., De, S., Shetty, P., Kulkarni, N.M., Devisingh, V., Jaji, M.S., et al.(2014) Combination of vildagliptin and rosiglitazone ameliorates nonalcoholic fatty liver disease in C57BL/6 mice. Ind J Pharmacol, 46, 46–50. First citation in articleCrossrefGoogle Scholar

  • 23 Kim, J.K., Lee, K.S., Lee, D.K., Lee, S.Y., Chang, H.Y., Choi, J., & Lee, J.I. (2014) Omega-3 polyunsaturated fatty acid and ursodeoxycholic acid have an additive effect in attenuating diet-induced nonalcoholic steatohepatitis in mice. Exp Mol Med, 46, e127. First citation in articleCrossref MedlineGoogle Scholar

  • 24 Wu, D., Zheng, N., Qi, K., Cheng, H., Sun, Z., Gao, B., et al.(2015) Exogenous hydrogen sulfide mitigates the fatty liver in obese mice through improving lipid metabolism and antioxidant potential. Med Gas Res, 5, 1. First citation in articleCrossref MedlineGoogle Scholar

  • 25 Buettner, R., Scholmerich, J., & Bollheimer, C.L. (2007) High-fat diets: Modeling the metabolic disorders of human obesity in rodents. Obesity, 15, 798–808. First citation in articleCrossref MedlineGoogle Scholar

  • 26 Zhang, M., Liu, C., Hu, M.Y., Zhang, J., Xu, P., Li, F., et al.(2015) High-fat diet enhanced retinal dehydrogenase activity, but suppressed retinol dehydrogenase activity in liver of rats. J Pharmacol Sci, 127, 430–438. First citation in articleCrossref MedlineGoogle Scholar

  • 27 Hu, X., Jandacek, R.J., & White, W.S. (2000) Intestinal absorption of beta-carotene ingested with a meal rich in sunflower oil or beef tallow: postprandial appearance in triacylglycerol-rich lipoproteins in women. Am J Clin Nutr, 71, 1170–1180. First citation in articleCrossref MedlineGoogle Scholar

  • 28 Ribaya-Mercado, J.D. (2002) Influence of dietary fat on beta-carotene absorption and bioconversion into vitamin A. Nutr Rev, 60, 104–110. First citation in articleCrossref MedlineGoogle Scholar

  • 29 Ribaya-Mercado, J.D., Maramag, C.C., Tengco, L.W., Dolnikowski, G.G., Blumberg, J.B., & Solon, F.S. (2007) Carotene-rich plant foods ingested with minimal dietary fat enhance the total-body vitamin A pool size in Filipino schoolchildren as assessed by stable-isotope-dilution methodology. Am J Clin Nutr, 85, 1041–1049. First citation in articleCrossref MedlineGoogle Scholar

  • 30 Schweigert, F.J., Baumane, A., Buchholz, I., & Schoon, H.A. (2000) Plasma and tissue concentrations of beta-carotene and vitamin A in rats fed beta-carotene in various fats of plant and animal origin. J Environ Pathol Toxicol Oncol, 19, 87–93. First citation in articleMedlineGoogle Scholar

  • 31 Dawson-Hughes, B., Harris, S.S., Lichtenstein, A.H., Dolnikowski, G., Palermo, N.J., & Rasmussen, H. (2015) Dietary fat increases vitamin D-3 absorption. J Acad Nutr Diet, 115, 225–230. First citation in articleCrossref MedlineGoogle Scholar

  • 32 Asha, G.V., Raja Gopal Reddy, M., Mahesh, M., Vajreswari, A., & Jeyakumar, S.M. (2016) Male mice are susceptible to high fat diet-induced hyperglycaemia and display increased circulatory retinol binding protein 4 (RBP4) levels and its expression in visceral adipose depots. Arch Physiol Biochem, 122, 19–26. First citation in articleCrossref MedlineGoogle Scholar

  • 33 Arterburn, L.M., Hall, E.B., & Oken, H. (2006) Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am J Clin Nutr, 83, 1467S–1476S. First citation in articleCrossref MedlineGoogle Scholar

  • 34 Domenichiello, A.F., Kitson, A.P., & Bazinet, R.P. (2015) Is docosahexaenoic acid synthesis from α-linolenic acid sufficient to supply the adult brain? Prog Lip Res, 59, 54–66. First citation in articleCrossref MedlineGoogle Scholar

  • 35 Pauter, A.M., Olsson, P., Asadi, A., Herslöf, B., Csikasz, R.I., Zadravec, D., & Jacobsson, A. (2014) Elovl2 ablation demonstrates that systemic DHA is endogenously produced and is essential for lipid homeostasis in mice. J Lip Res, 55, 718–728. First citation in articleCrossref MedlineGoogle Scholar

  • 36 Harris, W.S., Dayspring, T.D., & Moran, T.J. (2013) Omega-3 fatty acids and cardiovascular disease: new developments and applications. Postgrad Med, 125, 100–113. First citation in articleCrossref MedlineGoogle Scholar

  • 37 Weintraub, H. (2013) Update on marine omega-3 fatty acids: management of dyslipidemia and current omega-3 treatment options. Atherosclerosis, 230, 381–389. First citation in articleCrossref MedlineGoogle Scholar

  • 38 Lorente-Cebrián, S., Costa, A.G., Navas-Carretero, S., Zabala, M., Martínez, J.A., & Moreno-Aliaga, M.J. (2013) Role of omega-3 fatty acids in obesity, metabolic syndrome, and cardiovascular diseases: a review of the evidence. J Physiol Biochem, 69, 633–651. First citation in articleCrossref MedlineGoogle Scholar

  • 39 Bouzianas, D.G., Bouziana, S.D., & Hatzitolios, A.I. (2013) Potential treatment of human non-alcoholic fatty liver disease with long-chain omega-3 polyunsaturated fatty acids. Nutr Rev, 71, 753–771. First citation in articleCrossref MedlineGoogle Scholar