Skip to main content
Log in

Keto-Enolic Equilibria of an Isatin-Schiff Base Copper(II) Complex and its Reactivity toward Carbohydrate Oxidation

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

An interesting isatin-Schiff base copper(II) complex, [Cu(isapn)](ClO4)2 where isapn= N,N′-[bis-(3,3′-indolin-2-one)]-1,3-diiminepropane, was prepared and characterized by different techniques, both in the solid state and in solution, and its reactivity toward carbohydrate oxidation was verified. The positive ion electrospray mass spectrum detects the complex as an isotopologue cluster of singly charged intact isatin-copper(I) ions of m/z 395 (for 65Cu) with an isotopic pattern identical to that calculated for C19H16CuN4O2 +. Tandem mass spectrometry reveals an interesting and structurally diagnostic collision-induced dissociation behavior for this ionized complex, which is dominated by the cleavage of the N—(CH2)3—N propylene bridge. In aqueous solution, this complex undergoes a peculiar keto-enolic equilibrium, verified at different pH's by spectroscopic methods (u.v.–vis. and e.p.r.), with a corresponding pK a determined as 9.5. The e.p.r. parameter ratio g /A for this complex, in frozen MeOH/H2O (4:1, v/v) solution at 77 K, changes from 188 cm in acidic medium (pH 2.5–3.0) to 118 cm in basic medium (pH 11), indicating a significant structural change from a distorted tetrahedral to a more tetragonal geometry around the copper ion. This compound was shown to catalyze the oxidation of hexoses (glucose, fructose and galactose), in alkaline media, via reactive oxygen species, which were detected by using specific enzymes, and by e.p.r. spin trapping. The reaction was monitored at (25.0 ± 0.1)°C by the consumption of oxygen, and showed first-order dependence on catalyst, followed by a saturation effect. First-order kinetics with respect to [OH] concentration was also observed, indicating that enolization of the substrate as well as the metal-catalyzed enediol oxidation are the rate-determining steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. (a) S.K. Sridhar, S.N. Pandeya, J.P. Stables and A. Ramesh, Eur. J. Pharm. Sci., 16, 129 (2002); (b) A.E. Medvedev, A. Cow, M. Sandler and V. Glover, Biochem. Pharmacol., 52, 385 (1996); (c) V. Glover, A. Medvedev and M. Sadler, Life Sci., 57, 207 (1995).

    Google Scholar 

  2. (a) Y. Tozawa, A. Ueki, S. Manabe and K. Matsushima, Biochem.Pharmacol., 56, 1041 (1998); (b) J.E. Morley, S.A Farr and J.F.Flood, Eur. J. Pharmacol., 305, 23 (1996).

    Google Scholar 

  3. J.F.M. Silva, S.J. Garden and A.C. Pinto, J. Braz. Chem. Soc., 12, 273 (2001).

    Google Scholar 

  4. (a) S.E. Webber, J. Tikhe, S.T. Worland, S.A. Fuhrman, T.F. Hendrickson, D.A. Matthews, R.A. Love, A.K. Patick, J.W. Meador, R.A. Ferre, E.L. Brown, D.M. DeLisle, C.E. Ford and S.L. Binford, J. Med. Chem., 39, 5072 (1996); (b) M. Mohammadi, G. McMahon, L. Sun, C. Tang, P. Hirth, B.K. Yeh, S.R. Hubbard and J. Schlessinger, Science, 276, 955 (1997).

    Google Scholar 

  5. S.N. Pandeya, D. Sriram, G. Nath and E. DeClercq, Eur. J. Pharm. Sci., 9, 25 (1999).

    Google Scholar 

  6. N. Karali, Eur. J. Med. Chem., 37, 909 (2002).

    Google Scholar 

  7. A. Cane, M.C. Tournaire, D. Barritault and M. Crumeyrolle-Arias, Biochem. Biophys. Res. Commun., 276, 379 (2000).

    Google Scholar 

  8. (a) C.V.R. Reddy and M.G.R. Reddy, J. Chem. Eng. Data, 39, 723 (1994); (b) G.A. Bain, D.X. West, J. Krejci, J. Valdé s-Martínez, S. Hernández-Ortega and R.A. Toscano, Polyhedron, 16, 855 (1997); (c) V.I. Tsapkov, N. Al-Nabgali, V.V. Stan and N.M. Samus, Russ. J. Gen. Chem., 64, 1604 (1994).

    Google Scholar 

  9. (a) R.C. Khulbe, R.P. Singh and Y.K. Bhoon, Transition Met. Chem., 8, 59 (1983); (b) R.C. Khulbe, Y.K. Bhoon and R.P. Singh, J. Indian Chem. Soc., 58, 840 (1981).

    Google Scholar 

  10. D.X. West, A.K. El-Sawaf and G.A. Bain, Transition Met. Chem., 23, 1 (1998).

    Google Scholar 

  11. M.C. Rodríguez-Argüelles, A. Sanchez, M.B. Ferrari, G.G. Fava, C. Pelizzi, G. Pelosi, R. Albertini, P. Lunghi and S. Pinelli, J. Inorg. Biochem., 73, 7 (1999).

    Google Scholar 

  12. M.B. Ferrari, C. Pelizzi, G. Pelosi and M.C. Rodríguez-Argüelles, Polyhedron, 21, 2593 (2002).

    Google Scholar 

  13. (a) A.M.A. Hassaan, Transition Met. Chem., 15, 283 (1990); (b) A.M.A. Hassaan, A.K.A. Al-Nasr and M.A. Khalifa, J. Indian Chem. Soc., 74, 496 (1997); (c) A.M.A. Hassaan, A.K.A. Al-Nasr and M.A. Khalifa, Russ. J. Coord. Chem., 23, 356 (1997).

    Google Scholar 

  14. A.M.A. Hassaan, Syn. React. Inorg. Met.-Org. Chem., 27, 835 (1997).

    Google Scholar 

  15. (a) S.P. Wolff, Z.Y. Jiang and J.V. Hunt, Free Radical Biol. Med., 10, 339 (1991); (b) S.P. Wolff and R.T. Dean, Biochem. J., 245, 243 (1987).

    Google Scholar 

  16. V.V. Mossine, M. Linetsky, G.V. Glinsky, B.J. Ortwerth and M.S. Feather, Chem. Res. Toxicol., 12, 230 (1999).

    Google Scholar 

  17. (a) R. Cheng and S. Kawakishi, J. Agric. Food Chem., 42, 700 (1994); (b) G.B. Sajithlal, P. Chithra and G. Chandrakasan, Mol. Cell. Biochem., 194, 257 (1999).

    Google Scholar 

  18. M.B. Yim, H.S. Yim, C. Lee, S.-O. Kang and P.B. Chock, Ann. NY Acad. Sci., 928, 48 (2001).

    Google Scholar 

  19. J.W. Eaton and M. Qian, Mol. Cell. Biochem., 234/235, 135 (2002).

    Google Scholar 

  20. R.T. Rodio, E.M. Pereira, M.M. Tavares and A.M.D.C. Ferreira, Carbohydr. Res., 315, 319 (1999).

    Google Scholar 

  21. G.R. Buettner and L.W. Oberley, Biochem. Biophys. Res. Commun., 8, 69 (1978).

    Google Scholar 

  22. (a) H. Kaur, Free Rad. Res., 24, 409 (1996); (b) H. Kaur, K.H.W. Leung and M.J. Perkins, J. Chem. Soc., Chem. Commun., 142 (1981).

    Google Scholar 

  23. W.J. Geary, Coord. Chem. Rev., 7, 81 (1971).

    Google Scholar 

  24. P. Guerriero, S. Tamburini and P.A. Vigato, Coord. Chem. Rev., 139, 17 (1995).

    Google Scholar 

  25. D.R. Lide, (Ed.), CRC Handbook of Chemistry and Physics, 76th edit., Boca Raton, 1995/1996.

  26. R.B. Cole, (Ed.), Electrospray Ionization Mass Spectrometry, Wiley, New York, 1997.

    Google Scholar 

  27. R. Colton, A. D'Agostinho and J.C. Traeger, Mass Spectrom. Rev., 14, 79 (1995).

    Google Scholar 

  28. (a) J. Griep-Raming, S. Meyer, T. Bruhn and J.O. Metzger, Angew. Chem. Int. Ed., 41, 2738 (2002); (b) R. Arakawa, S. Tachiyashiki and T. Matsuo, Anal. Chem., 67, 4133 (1995); (c) E. Meurer, L.S. Santos, R.A Pilli and M.N. Eberlin, Org. Lett., 5, 1391 (2003).

    Google Scholar 

  29. D.A. Plattner, Int. J. Mass Spectrom., 207, 125 (2001).

    Google Scholar 

  30. E. Labisbal, A. Sousa, A. Castineiras, J.A. García-Vázquez, J. Romero and D.X. West, Polyhedron, 19, 1255 (2000).

    Google Scholar 

  31. J. Muller, K. Felix, C. Maichle, E. Lengfelder and J. Strachle, J. Inorg. Chim. Acta, 233, 11 (1995).

    Google Scholar 

  32. S.V. Singh, O.C. Saxena and M.P. Singh, J. Am. Chem. Soc., 92, 537 (1970).

    Google Scholar 

  33. K.S. Rangappa, M.P. Raghavendra, D.S. Mahadevappa and D.C. Gowda, Carbohydr. Res., 307, 253 (1998).

    Google Scholar 

  34. V.A. Yaylayan and A.A. Ismail, Carbohydr. Res., 276, 253 (1995).

    Google Scholar 

  35. W.H. Koch and M.R. Cheedkel, Biochim. Biophys. Acta, 924, 458 (1987).

    Google Scholar 

  36. C.A. Davies, B.R. Nielsen, G. Timmins, L. Hamilton, A. Brooker, R. Guo, M.C.R. Symons and P.G. Winyard, Nitric Oxide: Biol. Chem., 5, 116 (2001).

    Google Scholar 

  37. (a) S. Oikawa and S. Kawanishi, Biochemistry, 35, 4584 (1996); (b) T. Kocha, M. Yamaguchi, H. Ohtaki, T. Fukuda and T. Aoyagi, Biochim. Biophys. Acta, 1337, 319 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerchiaro, G., Saboya, P.L., da Costa Ferreira, A.M. et al. Keto-Enolic Equilibria of an Isatin-Schiff Base Copper(II) Complex and its Reactivity toward Carbohydrate Oxidation. Transition Metal Chemistry 29, 495–504 (2004). https://doi.org/10.1023/B:TMCH.0000037515.77851.12

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TMCH.0000037515.77851.12

Keywords

Navigation