Skip to main content
Log in

Probability Interpretation of the Integral of Fractional Order

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We establish a relation between stable distributions in probability theory and the fractional integral. Moreover, it turns out that the parameter of the stable distribution coincides with the exponent of the fractional integral. It follows from an analysis of the obtained results that equations with the fractional time derivative describe the evolution of some physical system whose time degree of freedom becomes stochastic, i.e., presents a sum of random time intervals subject to a stable probability distribution. We discuss relations between the fractal Cantor set (Cantor strips) and the fractional integral. We show that the possibility to use this relation as an approximation of the fractional integral is rather limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Integrals and Derivatives of Fractional Order and Their Applications [in Russian], Nauka i Tekhnika, Minsk (1987); English transl.: Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York (1993).

    Google Scholar 

  2. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York (1993).

    Google Scholar 

  3. R. R. Nigmatullin and Ya. E. Ryabov, Fiz. Tverd. Tela, 39, 101 (1997).

    Google Scholar 

  4. K. Weron and A. Klauser, Ferroelectrics, 236, 59 (2000).

    Google Scholar 

  5. M. F. Shlesinger and G. M. Zaslavsky, J. Klafter. Nature, 363, 31 (1993).

    Google Scholar 

  6. R. Metzler, E. Barkai, and J. Klafter, Phys. Rev. Lett., 82, 3563 (1999).

    Google Scholar 

  7. R. Metzler and J. Klafter, Phys. Rep., 339, 1 (2000).

    Google Scholar 

  8. G. M. Zaslavsky, Phys. D, 76, 110 (1994).

    Google Scholar 

  9. A. I. Saichev and G. M. Zaslavsky, Chaos, 7, 753 (1997).

    Google Scholar 

  10. B. Ross, ed., Fractional Calculus and Its Applications (Lect. Notes Math., Vol. 457), Springer, New York (1975).

  11. A. McBride and G. Roach, eds., Fractional Calculus (Res. Notes Math., Vol. 138), Pitman, Boston (1985).

    Google Scholar 

  12. K. Nishimoto, ed., Fractional Calculus and Its Applications, Hihon University, Koriyama (1990).

  13. P. Rusev, I. Dimovski, and V. Kiryakova, eds., Transform Methods and Special Functions, Inst. Math. and Informatics, Bulgarian Acad. Sci., Sofia (1998).

    Google Scholar 

  14. B. Mandelbrot, Fractal Geometry of Nature, Freeman, San Francisco (1983).

    Google Scholar 

  15. L. Pietronero and E. Tosatti, eds., Fractals in Physics (Proc. 6th Trieste Intl. Symp. on Fractals in Physics, ICTP, Trieste, Italy, July 9–12, 1985), North-Holland, Amsterdam (1986).

    Google Scholar 

  16. R. R. Nigmatullin, Theor. Math. Phys., 90, 242 (1992).

    Google Scholar 

  17. A. Le Mehaute, R. R. Nigmatullin, and L. Nivanen, Fleches du temps et geometric fractale, Hermes, Paris (1998).

    Google Scholar 

  18. A. I. Olemskoi and A. Ya. Flat, Phys. Usp., 36, 1087 (1993); S. Fu, Real Anal. Exchange, 21, No. 1, 308 (1995); F. Y. Ren, Z. G. Yu, and F. Su, Phys. Lett. A, 219, 59 (1996); Z. G. Yu and F. Y. Ren, J. Phys. A, 30, 5559 (1997); F. Y. Ren et al., Phys. A, 246, 419 (1997); F. Y. Ren and Z. G. Yu, Progr. Natural Sci., 7, 422 (1997); M. Monsrefi-Torbati and J. K. Hammond, J. Franklin Inst. B, 335, 1077 (1998); F. Y. Ren, J. R. Liang, and X. T. Wang, Phys. Lett. A, 252, 141 (1999); Z. G. Yu, Phys. Lett. A, 257, 221 (1999); A. I. Olemskoi and V. F. Klepikov, Phys. Rep., 338, 571 (2000).

    Google Scholar 

  19. R. S. Rutman, Theor. Math. Phys., 100, 1154 (1994); 105, 1509 (1995).

    Google Scholar 

  20. A. A. Stanislavsky and K. Weron, Phys. A, 303, 57 (2002).

    Google Scholar 

  21. E. W. Montroll and G. H. Weiss, J. Math. Phys., 6, 167 (1965).

    Google Scholar 

  22. H. Scher and E. W. Montroll, Phys. Rev. B, 12, 245 (1975); M. F. Shlesinger and B. D. Hughes, Phys. A, 109, 597 (1981); M. F. Shlesinger, J. Stat. Phys., 36, 639( 1984); H. Weissman, G. H. Weiss, and S. Havlin, J. Stat. Phys., 57, 301 (1989); J. Klafter and G. Zumofen, J. Phys. Chem., 98, 7366 (1994).

    Google Scholar 

  23. V. M. Zolotarev, One-Dimensional Stable Distributions [in Russian], Nauka, Moscow (1983); English transl., Am. Math. Soc., Providence, R. I. (1986).

    Google Scholar 

  24. N. H. Bingham, Z. Wahrscheinlichkeitstheorie verw. Geb., 17, 1 (1971).

    Google Scholar 

  25. M. M. Meerschaert and H.-P. Scheffler, “Limit theorems for continuous time random walks,” http://unr.edu/ homepage/mcubed/LimitCTRW.pdf (2001).

  26. W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 2, Wiley, New York (1971).

    Google Scholar 

  27. F. Mainardi, Chaos Solitons Fractals, 7, 1461 (1996).

    Google Scholar 

  28. H. C. Fogedby, Phys. Rev. E, 50, 1657 (1994).

    Google Scholar 

  29. H. C. Fogedby, Phys. Rev. E, 58, 1690 (1998).

    Google Scholar 

  30. A. A. Stanislavsky, Phys. Rev. E, 61, 4752 (2000).

    Google Scholar 

  31. I. M. Sokolov, Phys. Rev. E, 63, 056111 (2001).

    Google Scholar 

  32. P. Becker-Kern, M. M. Meerschaert, and H.-P. Scheffler, “Limit theorems for coupled continuous time random walks,” http://unr.edu/homepage/mcubed/CoupleCTRW.pdf (2001).

  33. E. Barkai and R. J. Silbey, J. Phys. Chem. B, 104, 3866 (2000); I. M. Sokolov, J. Klafter, and A. Blumen, Phys. Rev. E, 64, 021107 (2001).

    Google Scholar 

  34. N. G. Van Kampen, Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam (1984).

    Google Scholar 

  35. G. von Röpke, Statistische Mechanik für das Nichtgleichgewicht, VEB Deutscher Verlag der Wissenschaften, Berlin (1987).

    Google Scholar 

  36. H. Bateman and A. Erdélyi, Higher Transcendental Functions (Based on notes left by H. Bateman), Vols. 1, 2, 3, McGraw-Hill, New York (1953, 1953, 1955).

    Google Scholar 

  37. W. G. Glöckle and T. F. Nonnenmacher, Macromolecules, 24, 6426 (1991).

    Google Scholar 

  38. M. A. Lavrent'ev and B. V. Shabat, Methods of the Theory of Functions of a Complex Variable [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  39. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian], Nauka, Moscow (1971); English transl.: Tables of Integrals, Series, and Products, Acad. Press, New York (1980).

    Google Scholar 

  40. C. Fox, Trans. Am. Math. Soc., 98, 395 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanislavsky, A.A. Probability Interpretation of the Integral of Fractional Order. Theoretical and Mathematical Physics 138, 418–431 (2004). https://doi.org/10.1023/B:TAMP.0000018457.70786.36

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TAMP.0000018457.70786.36

Navigation