Skip to main content
Log in

Chlorobium Tepidum: Insights into the Structure, Physiology, and Metabolism of a Green Sulfur Bacterium Derived from the Complete Genome Sequence

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Green sulfur bacteria are obligate, anaerobic photolithoautotrophs that synthesize unique bacteriochlorophylls (BChls) and a unique light-harvesting antenna structure, the chlorosome. One organism, Chlorobium tepidum, has emerged as a model for this group of bacteria primarily due to its relative ease of cultivation and natural transformability. This review focuses on insights into the physiology and biochemistry of the green sulfur bacteria that have been derived from the recently completed analysis of the 2.15-Mb genome of Chl. tepidum. About 40 mutants of Chl. tepidum have been generated within the last 3 years, most of which have been made based on analyses of the genome. This has allowed a nearly complete elucidation of the biosynthetic pathways for the carotenoids and BChls in Chl. tepidum, which include several novel enzymes specific for BChl c biosynthesis. Facilitating these analyses, both BChl c and carotenoid biosynthesis can be completely eliminated in Chl. tepidum. Based particularly on analyses of mutants lacking chlorosome proteins and BChl c, progress has also been made in understanding the structure and biogenesis of chlorosomes. In silico analyses of the presence and absence of genes encoding components involved in electron transfer reactions and carbon assimilation have additionally revealed some of the potential physiological capabilities, limitations, and peculiarities of Chl. tepidum. Surprisingly, some structural components and biosynthetic pathways associated with photosynthesis and energy metabolism in Chl. tepidum are more similar to those in cyanobacteria and plants than to those in other groups of photosynthetic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adam P, Hecht S, Eisenreich W, Kaiser J, Gräwert T, Arigoni D, Bacher A and Rohdich F (2002) Biosynthesis of terpenes: Studies on 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase. Proc Natl Acad Sci USA 99: 12108–12113

    Article  PubMed  CAS  Google Scholar 

  • Alberti M, Burke DH and Hearst JE (1995) Structure and sequence of the photosynthetic gene cluster. In: Blankenship RE, Madigan, MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 1083–1106. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Altincicek B, Duin EC, Reichenberg A, Hedderich R, Kollas A-K, Hintz M, Wagner S, Wiesner J, Beck E and Jomaa H (2002) LytB protein catalyzes the terminal step of the 2-C-methyl-D-erythritol-4-phosphate pathway of isoprenoid biosynthesis. FEBS Lett 532: 437–440

    Article  PubMed  CAS  Google Scholar 

  • Andersen C, Hughes C and Koronakis V (2001) Protein export and drug efflux through bacterial channel-tunnels. Curr Opin Cell Biol 13: 412–416

    Article  PubMed  CAS  Google Scholar 

  • Appel J, Phunpruch S, Steinmüller K and Schulz R (2000) The bidirectional hydrogenase of Synechocystis sp PCC 6803 works as an electron valve during photosynthesis. Arch Microbiol 173: 333–338

    Article  PubMed  CAS  Google Scholar 

  • Armstrong G (1999) Carotenoid genetics and biochemistry. In: Barton D, Nakanishi K and Meth-Cohn O (eds) Comprehensive Natural Products Chemistry, Vol 2, pp 321–352. Elsevier, Amsterdam

    Google Scholar 

  • Atomi H (2002) Microbial enzymes involved in carbon dioxide fixation. J Biosci Bioeng 94: 497–505

    PubMed  CAS  Google Scholar 

  • Beh M, Strauss G, Huber R, Stetter K-O and Fuchs g (1993) Enzymes of the reductive citric acid cycle in the autotrophic eubacterium Aquifex pyrophilus and in the archaebacterium Thermoproteus neutrophilus. Arch Microbiol 160: 306–311

    Article  CAS  Google Scholar 

  • Béjà O, Suzuki MT, Heidelberg JF, Nelson WC, Preston CM Hamada T, Eisen JA, Fraser CM and DeLong EF (2002) Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature 415: 630–633

    Article  PubMed  Google Scholar 

  • Blankenship RE and Matsuura K (2003) Antenna complexes in green photosynthetic bacteria. In: Green BR and Parson WW (eds) Light-Harvesting Antennas. Kluwer Academic Publishers, Dordrecht, The Netherlands (in press)

    Google Scholar 

  • Blankenship RE, Olson J and Miller M (1995) Antenna complexes from green photosynthetic bacteria. In: Blankenship RE, Madigan, MT, and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 399–435. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Bobe FW, Pfennig N, Swanson KL and Smith km (1990) Red shift of absorption maxima in Chlorobiineae through enzymatic methylation of their antenna bacteriochlorophylls. Biochemistry 29: 4340–4348

    Article  PubMed  CAS  Google Scholar 

  • Boison G, Schmitz O, Schmitz B and Bothe H (1998) Unusual gene arrangement of the bidirectional hydrogenase and functional analysis of its diaphorase subunit HoxU in respiration of the unicellular cyanobacterium Anacystis nidulans. Curr Microbiol 36: 253–258

    Article  PubMed  CAS  Google Scholar 

  • Borrego CM, Gerola PD, Miller M and Cox RP (1999) Light intensity effects on pigment composition and organisation in the green sulfur bacterium Chlorobium tepidum. Photosynth Res 59: 159–166

    Article  CAS  Google Scholar 

  • Broch-Due M and Ormerod JG (1978) Isolation of a BChl c mutant from Chlorobium with BChl d by cultivation at low light. FEMS Microbiol Lett 3: 305–308

    Article  Google Scholar 

  • Brune DC (1995) Sulfur compounds as photosynthetic electron donors. In: Blankenship RE, Madigan, MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 847–870. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Bryant DA, Vassilieva EV, Frigaard N-U and Li H (2002) Selective protein extraction from Chlorobium tepidum chlorosomes using detergents. Evidence that CsmA forms multimers and binds bacteriochlorophyll a. Biochemistry 41: 14403–14411

    Article  PubMed  CAS  Google Scholar 

  • Buchanan BB and Arnon DI (1990) A reverse Krebs cycle in photosynthesis: consensus at last. Photosynth Res 24: 47–53

    Article  PubMed  CAS  Google Scholar 

  • Büttner M, Lie D-L, Nelson H, Pinther W, Hauska G and Nelson N (1992a) Photosynthetic reaction center genes in green sulfur bacteria and in Photosystem 1 are related. Proc Natl Acad Sci USA 89: 8135–8139

    Article  PubMed  Google Scholar 

  • Büttner M, Lie D-L, Nelson H, Pinther W, Hauska G and Nelson N (1992b) The photosystem I-like P840-reaction center of green S-bacteria is a homodimer. Biochim Biophys Acta 1101: 154–156

    PubMed  Google Scholar 

  • Chung S and Bryant DA (1996a) Characterization of csmB genes from Chlorobium vibrioforme 8327D and Chlorobium tepidum and overproduction of the Chlorobium tepidum CsmB protein in Escherichia coli. Arch Microbiol 166: 234–244

    Article  PubMed  CAS  Google Scholar 

  • Chung S and Bryant DA (1996b) Characterization of the csmD and csmE genes from Chlorobium tepidum. The CsmA, CsmC, CsmD, and CsmE proteins are components of the chlorosome envelope. Photosynth Res 50: 41–59

    Article  CAS  Google Scholar 

  • Chung S, Frank G, Zuber H and Bryant DA (1994) Genes encoding two chlorosome proteins from the green sulfur bacteria Chlorobium vibrioforme strain 8327D and Chlorobium tepidum. Photosynth Res 41: 261–275

    Article  CAS  Google Scholar 

  • Chung S, Shen G, Ormerod J and Bryant DA (1998) Insertional inactivation studies of the csmA and csmC genes of the green sulfur bacterium Chlorobium vibrioforme 8327: the chlorosome protein CsmA is required for viability but CsmC is dispensable. FEMS Microbiol Lett 164: 353–361

    Article  PubMed  CAS  Google Scholar 

  • Clayton RK (1980) Photosynthesis: Physical Mechanisms and Chemical Patterns. Cambridge University Press, Cambridge, UK, 281 pp

    Google Scholar 

  • Cournac L, Mus F, Bernard L, Guedeney G, Vignais P and Peltier G (2002) Limiting steps of hydrogen production in Chlamydomonas reinhardtii and Synechocystis PCC 6803 as analysed by light-induced gas exchange transients. Intl J Hydrog Ener 27: 1229–1237

    Article  CAS  Google Scholar 

  • Cunningham FX Jr, Sun Z, Chamovitz D, Hirschberg J and Gantt E (1994) Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium Synechococcus sp strain PCC7942. Plant Cell 6: 1107–1121

    Article  PubMed  CAS  Google Scholar 

  • Drutschmann M and Klemme J-H (1985) Sulfide-repressed, membrane-bound hydrogenase in the thermophilic facultative phototroph Chloroflexus aurantiacus. FEMS Microbiol Lett 28: 231

    Article  CAS  Google Scholar 

  • Eisen JA, Nelson KE, Paulsen IT, Heidelberg JF, Wu M, Dodson RJ, Deboy R, Gwinn ML, Nelson WC, Haft DH, Hickey EK, Peterson JD, Durkin AS, Kolonay JL, Yang F, Holt I, Umayam LA, Mason T, Brenner M, Shea TP, Parksey D, Feldblyum TV, Hansen CL, Craven MB, Radune D, Khouri H, Fujii CY, White O, Venter JC, Volfovsky N, Gruber TM, Ketchum KA, Tettelin H, Bryant DA and Fraser CM (2002) The complete genome sequence of the green sulfur bacterium Chlorobium tepidum. Proc Natl Acad Sci USA 99: 9509–9514

    Article  PubMed  CAS  Google Scholar 

  • Francke C and Amesz J (1997) Isolation and pigment composition of the antenna system of four species of green sulfur bacteria. Photosynth Res 52: 137–146

    Article  Google Scholar 

  • Frazão C, Silva G, Gomes CM, Matias P, Coelho R, Sieker L, Macedo S, Liu MY, Oliveira S, Teixeira M, Xavier AV, Rodrigues-Pousada C, Carrondo MA and Le Gall J (2000) Structure of a dioxygen reduction enzyme from Desulfovibrio gigas. Nat Struct Biol 7: 1041–1045

    Article  PubMed  Google Scholar 

  • Friedrich T (2001) Complex I: a chimaera of a redox and conformation-driven proton pump? J Bioenerg Biomembr 33: 169–177

    Article  PubMed  CAS  Google Scholar 

  • Friedrich T and Scheide D (2000) The respiratory complex I of bacteria, archaea, and eukarya and its module common with membrane-bound multisubunit hydrogenases. FEBS Lett 479: 1–5

    Article  PubMed  CAS  Google Scholar 

  • Friedrich CG, Rother D, Bardischewsky F, Quentmeier A and Fischer J (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: Emergence of a common mechanism? Appl Environ Microbiol 67: 2873–2882

    Article  PubMed  CAS  Google Scholar 

  • Frigaard N-U and Bryant DA (2001) Chromosomal gene inactivation in the green sulfur bacterium Chlorobium tepidum by natural transformation. Appl Environ Microbiol 67: 2538–2544

    Article  PubMed  CAS  Google Scholar 

  • Frigaard N-U and Matsuura K (1999) Oxygen uncouples light absorption by the chlorosome antenna and photosynthetic electron transfer in the green sulfur bacterium Chlorobium tepidum. Biochim Biophys Acta 1412: 108–117

    Article  PubMed  CAS  Google Scholar 

  • Frigaard N-U, Takaichi S, Hirota M, Shimada K and Matsuura K (1997) Quinones in chlorosomes of green sulfur bacteria and their role in the redox-dependent fluorescence studied in chlorosome-like bacteriochlorophyll c aggregates. Arch Microbiol 167: 343–349

    Article  CAS  Google Scholar 

  • Frigaard N-U, Matsuura K, Hirota M, Miller M and Cox RP (1998) Studies of the location and function of isoprenoid quinones in chlorosomes from green sulfur bacteria. Photosynth Res 58: 81– 90

    Article  CAS  Google Scholar 

  • Frigaard N-U, Tokita S and Matsuura K (1999) Exogenous quinones inhibit photosynthetic electron transfer in Chloroflexus aurantiacus by specific quenching of the excited bacteriochlorophyll c antenna. Biochim Biophys Acta 1413: 108–116

    Article  PubMed  CAS  Google Scholar 

  • Frigaard N-U, Vassilieva EV, Li H, Milks KJ, Zhao J and Bryant DA (2001) The remarkable chlorosome. In: PS2001 Proceedings: 12th International Congress on Photosynthesis, Article S1-003. CSIRO Publishing, Melbourne, Australia

    Google Scholar 

  • Frigaard N-U, Voigt GD and Bryant DA (2002) Chlorobium tepidum mutant lacking bacteriochlorophyll c made by inactivation of the bchK gene, encoding bacteriochlorophyll c synthase. J Bacteriol 184: 3368–3376

    Article  PubMed  CAS  Google Scholar 

  • Frigaard N-U, Gomez Maqueo Chew A and Bryant DA (2003a) Bacteriochlorophyll biosynthesis in green bacteria. In: Grimm B, Porra R, Rüdiger W and Scheer H (eds) Biochemistry and Biophysics of Chlorophyll. Kluwer Academic Press (in press)

  • Frigaard N-U, Sakuragi Y and Bryant DA (2003b) Methods for insertional inactivation of genes in cyanobacteria and green sulfur bacteria. In: Carpentier R (ed) Photosynthesis Research Protocols, Methods in Molecular Biology Series. Humana Press, Totowa (in press)

    Google Scholar 

  • Garrity GM and Holt JG (2001a) Phylum BVI. Chloroflexi phy. nov. In: Boone DR and Castenholz RW (eds) Bergey's Manual of Systematic Bacteriology, 2nd ed, Vol I, pp 427–446. Springer, New York

    Google Scholar 

  • Garrity GM and Holt JG (2001b) Phylum BXI. Chlorobi phy. nov. In: Boone DR and Castenholz RW (eds) Bergey's Manual of Systematic Bacteriology, 2nd ed, Vol I, pp 601–623. Springer, New York

    Google Scholar 

  • Giuliano G, Giliberto L and Rosati C (2002) Carotenoid isomerase: a tale of light and isomers. Trends Plant Sci 7: 427–429

    Article  PubMed  CAS  Google Scholar 

  • Gogotov IN (1988) Hydrogenases of green bacteria. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E and Trüper HG (eds) Green Photosynthetic Bacteria, pp 165–172. Plenum Press, New York

    Google Scholar 

  • Gogotov IN, Zorin NA and Serebriakova LT (1991) Hydrogenproduction by model systems including hydrogenases from phototrophic bacteria. Intl J Hydrog Ener 16: 393–396

    Article  CAS  Google Scholar 

  • Gough SP, Petersen BO and Duus JØ (2000) Anaerobic chlorophyll isocyclic ring formation in Rhodobacter capsulatus requires a cobalamin cofactor. Proc Natl Acad Sci USA 97: 6908–6913

    Article  PubMed  CAS  Google Scholar 

  • Hager-Braun C, Xie D-L, Jarosch U, Herold E, Büttner M, Zimmermann R, Deutzmann R, Hauska G and Nelson N (1995) Stable photobleaching of P840 in Chlorobium reaction center preparations: presence of the 42-kDa bacteriochlorophyll a protein and a 17-kDa polypeptide. Biochemistry 34: 9617–9624

    Article  PubMed  CAS  Google Scholar 

  • Hanada S and Pierson BK (2002) The family Chloroflexaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H and Stackebrandt E (eds) The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community, 3rd edition, release 3.11. Springer-Verlag, New York (http://link.springerny. com/link/service/books/10125/)

    Google Scholar 

  • Hanson TE and Tabita FR (2001) A ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)-like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress. Proc Natl Acad Sci USA 98: 4397–4402

    Article  PubMed  CAS  Google Scholar 

  • Hauska G, Schoedl T, Remigy H and Tsiotis G (2001) The reaction center of green sulfur bacteria. Biochim Biophys Acta 1507: 260–277

    Article  PubMed  CAS  Google Scholar 

  • Heising S, Richter L, Ludwig W and Schink B (1999) Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a 'Geospirillum' sp. strain. Arch Microbiol 172: 116–124

    Article  PubMed  CAS  Google Scholar 

  • Helman Y, Tchernov D, Reinhold L, Shibata M, Ogawa T, Schwarz R, Ohad I and Kaplan A (2003) Gene encoding a-type flavoproteins are essential for photoreduction of O2 in cyanobacteria. Curr Biol 13: 230–235

    Article  PubMed  CAS  Google Scholar 

  • Igarashi N, Harada J, Nagashima S, Matsuura K, Shimada K and Nagashima KVP (2001) Horizontal transfer of the photosynthesis gene cluster and operon rearrangement in purple bacteria. J Mol Evol 52: 333–341

    PubMed  CAS  Google Scholar 

  • Imhoff JF (1995) Taxonomy and physiology of phototrophic purple bacteria and green sulfur bacteria. In: Blankenship RE, Madigan, MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 1–15. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Isaacson T, Ronen G, Zamir D and Hirschberg J (2002) Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants. Plant Cell 14: 333–342

    Article  PubMed  CAS  Google Scholar 

  • Ishii M, Igarashi Y and Kodama T (1989) Purification and characterization of ATP:citrate lyase from Hydrogenobacter thermophilus TK-6. J Bacteriol 171: 1788–1792

    PubMed  CAS  Google Scholar 

  • Itoh M, Seo D, Sakurai H and Sétif P (2002) Kinetics of electron transfer between soluble cytochrome c-554 and purified reaction center complex from the green sulfur bacterium Chlorobium tepidum. Photosynth Res 71: 125–135

    Article  PubMed  CAS  Google Scholar 

  • Johnson HA, Pelletier DA and Spormann AM (2001) Isolation and characterization of anaerobic ethylbenzene dehydrogenase, a novel Mo-Fe-S enzyme. J Bacteriol 183: 4536–4542

    Article  PubMed  CAS  Google Scholar 

  • Kanao T, Fukui T, Atomi H and Imanaka T (2001) ATP-citrate lyase from the green sulfur bacterium Chlorobium limicola is a heteromeric enzyme composed of two distinct gene products. Eur J Biochem 268: 1670–1678

    Article  PubMed  CAS  Google Scholar 

  • Kanao T, Fukui T, Atomi H and Imanaka T (2002a) Kinetic and biochemical analyses on the reaction mechanism of a bacterial ATP-citrate lyase. Eur J Biochem 269: 3409–3416

    Article  PubMed  CAS  Google Scholar 

  • Kanao T, Kawamura M, Fukui T, Atomi H and Imanaka T (2002b) Characterization of isocitrate dehydrogenase from the green sulfur bacterium Chlorobium limicola – a carbon dioxide-fixing enzyme in the reductive tricarboxylic acid cycle. Eur J Biochem 269: 1926–1931

    Article  PubMed  CAS  Google Scholar 

  • Kaneda K, Kuzuyama T, Takagi M, Hayakawa Y and Seto H (2001) An unusual isopentenyl diphosphate isomerase found in the mevalonate pathway gene cluster from Streptomyces sp strain CL190. Proc Natl Acad Sci USA 98: 932–937

    Article  PubMed  CAS  Google Scholar 

  • Kjær B, Jung Y-S, Yu L, Golbeck JH and Scheller HV (1994) Iron-sulfur centers in the photosynthetic reaction center complex from Chlorobium vibrioforme. Differences from and similarities to the iron–sulfur centers in Photosystem I. Photosynth Res 41: 105–114

    Article  Google Scholar 

  • Krubasik P and Sandmann G (2000) Molecular evolution of lycopene cyclases involved in the formation of carotenoids with ionone end groups. Biochem Soc Trans 28: 806–810

    Article  PubMed  CAS  Google Scholar 

  • Krügel H, Krubasik P, Weber K, Saluz HP and Sandmann G (1999) Functional analysis of genes from Streptomyces griseus involved in the synthesis of isorenieratene, a carotenoid with aromatic end groups, revealed a novel type of carotenoid desaturase. Biochim Biophys Acta 1439: 57–64

    PubMed  Google Scholar 

  • Leartsakulpanich U, Antonkine ML and Ferry JG (2000) Sitespecific mutational analysis of a novel cysteine motif proposed to ligate the 4Fe–4S cluster in the iron-sulfur flavoprotein of the thermophilic methanoarchaeon Methanosarcina thermophila. J Bacteriol 182: 5309–5316

    Article  PubMed  CAS  Google Scholar 

  • Lebedeva NV, Malinina NV and Ivanovsky RN (2002) A comparative study of the isocitrate dehydrogenases of Chlorobium limicola forma thiosulfatophilum and Rhodopseudomonas palustris. Microbiology 71: 657–661

    Article  CAS  Google Scholar 

  • Lehmann RP, Brunisholz RA and Zuber H (1994) Structural differences in chlorosomes from Chloroflexus aurantiacus grown under different conditions support the BChl c-binding function of the 5.7 kDa polypeptide. FEBS Lett 342: 319–324

    Article  PubMed  CAS  Google Scholar 

  • Lewis K (2000) Translocases: a bacterial tunnel for drugs and proteins. Curr Biol 10: R678–R681

    Article  PubMed  CAS  Google Scholar 

  • Li YF, Zhou WL, Blankenship RE and Allen JP (1997) Crystal structure of the bacteriochlorophyll a protein from Chlorobium tepidum. J Mol Biol 271: 456–471

    Article  PubMed  CAS  Google Scholar 

  • Lippert K-D and Pfennig N (1969) Die Verwertung von molekularem Wasserstof durch Chlorobium thiosulfatophilum – Wachstum und CO2-Fixierung. Arch Microbiol 65: 29–47

    CAS  Google Scholar 

  • Ma K, Weiss R and Adams MWW (2000) Characterization of hydrogenase II from the hyperthermophilic archaeon Pyrococcus furiosus and assessment of its role in sulfur reduction. J Bacteriol 182: 1864–1871

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Planells A, Arellano JB, Borrego CA, López-Iglesias C, Gich F and Garcia-Gil JS (2002) Determination of the topography and biometry of chlorosomes by atomic force microscopy. Photosynth Res 71: 83–90

    Article  PubMed  CAS  Google Scholar 

  • Masamoto K, Wada H, Kaneko T and Takaichi S (2001) Identification of a gene required for cis-to-trans carotene isomerization in carotenogenesis of the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 42: 1398–1402

    Article  PubMed  CAS  Google Scholar 

  • Meganathan R (2001) Biosynthesis of menaquinone (vitamin K2) and ubiquinone (coenzyme Q): a perspective on enzymatic mechanisms. Vitam Horm 6: 173–218

    Article  Google Scholar 

  • Méndez-Alvarez S, Pavón V, Esteve I, Guerrero R and Gaju N (1995) Genomic heterogeneity in Chlorobium limicola: chromosomic and plasmidic differences among strains. FEMS Microbiol Lett 134: 279–285

    Article  PubMed  Google Scholar 

  • Mi HL, Endo T, Ogawa T and Asada K (1995) Thylakoid membrane-bound, NADPH-specific pyridine-nucleotide dehydrogenase complex mediates cyclic electron-transport in the cyanobacterium Synechocystis sp PCC-68038. Plant Cell Physiol 36: 661–668

    CAS  Google Scholar 

  • Montaño GA, Bowen BP, LaBelle JT, Woodbury NW, Pizziconi VB and Blankenship RE (2001a) Determination of the number of bacteriochlorophyll molecules per chlorosome light-harvesting complex in Chlorobium tepidum. In: PS2001 Proceedings: 12th International Congress on Photosynthesis, Article S1-020. CSIRO Publishing, Melbourne, Australia

    Google Scholar 

  • Montaño GA, Wu H-M, Lin S, Brune DC and Blankenship RE (2001b) Isolation and characterization of the B795 baseplate light-harvesting complex from the chlorosomes of Chloroflexus aurantiacus. Biophys J: 30A

  • Oelze J and Golecki JR (1995) Membranes and chlorosomes of green bacteria: structure, composition and development. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 259–278. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Oh-oka H, Kakutani S, Kamei S, Matsubara H, Iwaki M and Itoh S (1995a) Highly purified photosynthetic reaction center (PscA/cytochrome c 551)2 complex of the green sulfur bacterium Chlorobium limicola. Biochemistry 34: 13091–13097

    Article  PubMed  CAS  Google Scholar 

  • Oh-oka H, Kamei S, Matsubara H and Itoh S (1995b) Two molecules of cytochrome c function as the electron donors to P840 in the reaction center complex isolated from a green sulfur bacterium, Chlorobium tepidum. FEBS Lett 365: 30–34

    Article  PubMed  CAS  Google Scholar 

  • Oh-oka H, Iwaki M and Itoh S (1998) Membrane-bound cytochrome c z couples quinol oxidoreductase to the P840 reaction center complex in isolated membranes of the green sulfur bacterium Chlorobium tepidum. Biochemistry 37: 12293–12300

    Article  PubMed  CAS  Google Scholar 

  • Okumura N, Shimada K and Matsuura K (1994) Photo-oxidation of membrane-bound and soluble cytochrome c in the green sulfur bacterium Chlorobium tepidum. Photosynth Res 41: 125–134

    Article  CAS  Google Scholar 

  • Olson JM (1998) Chlorophyll organization and function in green photosynthetic bacteria. Photochem Photobiol 67: 61–75

    Article  CAS  Google Scholar 

  • Overmann J (2000) The family Chlorobiaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H and Stackebrandt E (eds) The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community, 3rd edition, release 3.1. Springer-Verlag, New York (http://link.springer-ny.com/link/service/ books/10125/)

    Google Scholar 

  • Overmann J and Garcia-Pichel F (2000) The phototrophic way of life. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H and Stackebrandt E (eds) The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community, 3rd edition, release 3.2. Springer-Verlag, New York (http://link.springerny. com/link/service/books/10125/)

    Google Scholar 

  • Overmann J, Cypionka H and Pfennig N (1992) An extremely lowlight-adapted phototrophic sulfur bacterium from the Black Sea. Limnol Oceanogr 37: 150–155

    Article  CAS  Google Scholar 

  • Park H, Kreunen SS, Cuttriss AJ, DellaPenna D and Pogson BJ (2002) Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation and photomorphogenesis. Plant Cell 14: 321–332

    Article  PubMed  CAS  Google Scholar 

  • Powls R and Redfearn ER (1969) Quinones of the Chlorobacteriaceae – properties and possible function. Biochim Biophys Acta 172: 429–437

    Article  PubMed  CAS  Google Scholar 

  • Rabus R, Kube M, Beck A, Widdel F and Reinhardt R (2002) Genes involved in the anaerobic degradation of ethylbenzene in a denitrifying bacterium, strain EbN1. Arch Microbiol 178: 506–516

    Article  PubMed  CAS  Google Scholar 

  • Raymond J, Zhaxybayeva O, Gogarten JP, Gerdes SY and Blankenship RE (2002) Whole-genome analysis of photosynthetic prokaryotes. Science 298: 1616–1620

    Article  PubMed  CAS  Google Scholar 

  • Rémigy HW, Stahlberg H, Fotiadis D, Muller SA, Wolpensinger B, Engel A, Hauska G and Tsiotis G (1999) The reaction center complex from the green sulfur bacterium Chlorobium tepidum: A structural analysis by scanning transmission electron microscopy. J Mol Biol 290: 851–858

    Article  PubMed  Google Scholar 

  • Rodríguez-Concepción M and Boronat A (2002) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 130: 1079–1089

    Article  PubMed  CAS  Google Scholar 

  • Rohdich F, Hecht S, Gärtner K, Adam P, Krieger C, Amslinger S, Arigoni D, Bacher A and Eisenreich W (2002) Studies on the nonmevalonate terpene biosynthetic pathway: metabolic role of IspH (LytB) protein. Proc Natl Acad Sci USA 99: 1158–1163

    Article  PubMed  CAS  Google Scholar 

  • Rohdich F, Zepeck F, Adam P, Hecht S, Kaiser J, Laupitz R, Grawert T, Amslinger S, Eisenreich W, Bacher A and Arigoni D (2003) The deoxyxylulose phosphate pathway of isoprenoid biosynthesis: studies on the mechanisms of the reactions catalyzed by IspG and IspH protein. Proc Natl Acad Sci USA 100: 1586–1591

    Article  PubMed  CAS  Google Scholar 

  • Rother D and Friedrich CG (2002) The cytochrome complex SoxXA of Paracoccus pantotrophus is produced in Escherichia coli and functional in the reconstituted sulfur-oxidizing enzyme system. Biochim Biophys Acta 1598: 65–73

    PubMed  CAS  Google Scholar 

  • Sakuragi Y, Frigaard N-U, Shimada K and Matsuura K (1999) Association of bacteriochlorophyll a with the CsmA protein in chlorosomes of the photosynthetic green filamentous bacterium Chloroflexus aurantiacus. Biochim Biophys Acta 1413: 172–180

    Article  PubMed  CAS  Google Scholar 

  • Sakurai H, Kusumoto N and Inoue K (1996) Function of the reaction center of green sulfur bacteria. Photochem Photobiol 64: 5–13

    CAS  Google Scholar 

  • Schauder R, Widdel F and Fuchs G (1987) Carbon assimilation pathways in sulfate-reducing bacteria. II. Enzymes of a reductive citric acid cycle in the autotrophic Desulfobacter hydrogenophilus. Arch Microbiol 148: 218–225

    Article  CAS  Google Scholar 

  • Schmitz O, Boison G, Salzmann H, Bothe H, Schütz K, Wang SH and Happe T (2002) HoxE – a subunit specific for the pentameric bidirectional hydrogenase complex (HoxEFUYH) of cyanobacteria. Biochim Biophys Acta 1554: 66–74

    Article  PubMed  CAS  Google Scholar 

  • Schütz M, Brugna M, Lebrun E, Baymann F, Huber R, Stetter K-O, Hauska H, Toci R, Lemesle-Meunier D, Tron P, Schmidt C and Nitschke W(2000) Early evolution of cytochrome bc complexes. J Mol Biol 300: 663–675

    Article  PubMed  CAS  Google Scholar 

  • Scott MP, Kjær B, Scheller HV and Golbeck JH (1997) Redox titration of two [4Fe–4S] clusters in the photosynthetic reaction center from the anaerobic green sulfur bacterium Chlorobium vibrioforme. Eur J Biochem 244: 454–461

    Article  PubMed  CAS  Google Scholar 

  • Selvaraj F, Devine D, Zhou W, Brune DC, Lince MT and Blankenship RE (1998) Purification and properties of cytochrome c553 from the green sulfur bacterium Chlorobium tepidum. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol III, pp 1593–1596. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Senge MO and Smith KM (1995) Biosynthesis and structures of the bacteriochlorophylls. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 137– 151. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Seo D and Sakurai H (2002) Purification and characterization of ferredoxin-NAD(P)+ reductase from the green sulfur bacterium Chlorobium tepidum. Biochim Biophys Acta 1597: 123–132

    PubMed  CAS  Google Scholar 

  • Seo D, Tomioka A, Kusumoto N, Kamo M, Enami I and Sakurai H (2001) Purification of ferredoxins and their reaction with purified reaction center complex from the green sulfur bacterium Chlorobium tepidum. Biochim Biophys Acta 1503: 377–384

    Article  PubMed  CAS  Google Scholar 

  • Silva G, Oliveira S, Le Gall J, Xavier AV and Rodrigues-Pousada C (2001) Analysis of the Desulfovibrio gigas transcriptional unit containing rubredoxin (rd) and rubredoxin-oxygen oxidoreductase (roo) genes and upstream ORFs. Biochem Biophys Res Commun 280: 491–502

    Article  PubMed  CAS  Google Scholar 

  • Sirevåg R (1995) Carbon metabolism in green bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 871–883. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Tabita FR (1994) The biochemistry and molecular regulation of carbon dioxide metabolism in cyanobacteria. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 437–467. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Takaichi S and Oh-oka H (1999) Pigment composition in the reaction center complex from the thermophilic green sulfur bacterium, Chlorobium tepidum: Carotenoid glucoside esters, menaquinone and chlorophylls. Plant Cell Physiol 40: 691–694

    CAS  Google Scholar 

  • Takaichi S, Tsuji K, Hanada S, Matsuura K and Shimada K (1995) A novel carotenoid glucoside ester in green filamentous bacteria. In: Mathis P (ed) Photosynthesis: from Light to Biosphere, Vol IV, pp 127–130. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Takaichi S, Wang ZY, Umetsu M, Nozawa T, Shimada K and Madigan MT (1997) New carotenoids from the thermophilic green sulfur bacterium Chlorobium tepidum: 1?,2?-dihydro-?-carotene, 1?,2?-dihydrochlorobactene and OH-chlorobactene glucoside ester and the carotenoid composition of different strains. Arch Microbiol 168: 270–276

    Article  PubMed  CAS  Google Scholar 

  • Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wünschiers R and Lindblad P (2002) Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Molec Biol Rev 66: 1–20

    Article  CAS  Google Scholar 

  • Trüper HG, Lorenz C, Schedel M and Steinmetz (1988) Metabolism of thiosulfate in Chlorobium. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E and Trüper HG (eds) Green Photosynthetic Bacteria, pp 189–200. Plenum Press, New York

    Google Scholar 

  • van Noort PI, Zhu YW, LoBrutto R and Blankenship RE (1997) Redox effects on the excited-state lifetime in chlorosomes and bacteriochlorophyll c oligomers. Biophys J 72: 316–325

    Article  PubMed  CAS  Google Scholar 

  • Vassilieva EV, Frigaard N-U and Bryant DA (2000) Chlorosomes: the light-harvesting complexes of the green bacteria. Spectrum 13: 7–13

    CAS  Google Scholar 

  • Vassilieva EV, Antonkine ML, Zybailov BL, Yang F, Jakobs C, Golbeck GH and Bryant DA (2001) Electron transfer may occur in the chlorosome envelope: the CsmI and CsmJ proteins of chlorosomes are 2Fe–2S ferredoxins. Biochemistry 40: 464–473

    Article  PubMed  CAS  Google Scholar 

  • Vassilieva EV, Stirewalt VL, Jakobs CU, Frigaard N-U, Inoue-Sakamoto K, Baker MA, Sotak A and Bryant DA (2002) Subcellular localization of chlorosome proteins in Chlorobium tepidum and characterization of three new chlorosome proteins: CsmF, CsmH, and CsmX. Biochemistry 41: 4358–4300

    Article  PubMed  CAS  Google Scholar 

  • Verte F, Kostanjevecki V, De Smet L, Meyer TE, Cusanovich MA and Van Beeumen JJ (2002) Identification of a thiosulfate utilization gene cluster from the green phototrophic bacterium Chlorobium limicola. Biochemistry. 41: 2932–2945

    Article  PubMed  CAS  Google Scholar 

  • Vignais PM, Billoud B and Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25: 455–501

    PubMed  CAS  Google Scholar 

  • Volbeda A, Charon M-H, Piras C, Hatchikian EC, Frey M and Fontecilla-Camps JC (1995) Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 373: 580–587

    Article  PubMed  CAS  Google Scholar 

  • Wahlund TM and Madigan MT (1995) Genetic transfer by conjugation in the thermophilic green sulfur bacterium Chlorobium tepidum. J Bacteriol 177: 2583–2588

    PubMed  CAS  Google Scholar 

  • Wahlund TM and Tabita FR (1997) The reductive tricarboxylic acid cycle of carbon dioxide assimilation: initial studies and purification of ATP-citrate lyase from the green sulfur bacterium Chlorobium tepidum. J Bacteriol 179: 4859–4867

    PubMed  CAS  Google Scholar 

  • Wahlund TM, Woese CR, Castenholz RW and Madigan MT (1991) A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov. Arch Microbiol 156: 81–90

    Article  CAS  Google Scholar 

  • Warthmann R, Cypionka H and Pfennig N (1992) Photoproduction of H2 from acetate by syntrophic cocultures of green sulfur bacteria and sulfur-reducing bacteria. Arch Microbiol 157: 343–348

    Article  CAS  Google Scholar 

  • Weidner U, Geier S, Ptock A, Friedrich T, Leif H and Weiss H (1993) The gene locus of the proton-translocating NADH:ubiquinone oxidoreductase of Escherichia coli. Organization of the 14 genes and relationship between the derived proteins and subunits of mitochondrial complex I. J Mol Biol 233: 109–122

    Article  PubMed  CAS  Google Scholar 

  • Xiong J and Bauer CE (2002a) A cytochrome b origin of photosynthetic reaction centers: an evolutionary link between respiration and photosynthesis. J Mol Biol 322: 1025–1037

    Article  PubMed  CAS  Google Scholar 

  • Xiong J and Bauer CE (2002b) Complex evolution of photosynthesis. Annu Rev Plant Biol 53: 503–521

    Article  PubMed  CAS  Google Scholar 

  • Xiong J, Inoue K and Bauer CE (1998) Tracking molecular evolution of photosynthesis by characterization of a major photosynthesis gene cluster from Heliobacillus mobilis. PNAS USA 95: 14851–14856

    Article  PubMed  CAS  Google Scholar 

  • Xiong J, Fischer WM, Inoue K, Nakahara M and Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289: 1724–1730

    Article  PubMed  CAS  Google Scholar 

  • Yoon KS, Hille R, Hemann C and Tabita FR (1999) Rubredoxin from the green sulfur bacterium Chlorobium tepidum functions as an electron acceptor for pyruvate ferredoxin oxidoreductase. J Biol Chem 274: 29772–29778

    Article  PubMed  CAS  Google Scholar 

  • Yoon KS, Bobst C, Hemann CF, Hille R and Tabita FR (2001) Spectroscopic and functional properties of novel 2[4Fe–4S] cluster-containing ferredoxins from the green sulfur bacterium Chlorobium tepidum. J Biol Chem 276: 44027–44036

    Article  PubMed  CAS  Google Scholar 

  • Zhao T, Cruz F and Ferry JG (2001) Iron-sulfur flavoprotein (Isf) from Methanosarcina thermophila is the prototype of a widely distributed family. J Bacteriol 183: 6225–6233

    Article  PubMed  CAS  Google Scholar 

  • Zhou TQ, Radaev S, Rosen BP and Gatti DL (2000) Structure of the ArsA ATPase: the catalytic subunit of a heavy metal resistance pump. EMBO J 19: 4838–4845

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frigaard, NU., Chew, A.G.M., Li, H. et al. Chlorobium Tepidum: Insights into the Structure, Physiology, and Metabolism of a Green Sulfur Bacterium Derived from the Complete Genome Sequence. Photosynthesis Research 78, 93–117 (2003). https://doi.org/10.1023/B:PRES.0000004310.96189.b4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PRES.0000004310.96189.b4

Navigation