Skip to main content
Log in

Ebselen Protects Ca2+ Influx Blockage But Does Not Protect Glutamate Uptake Inhibition Caused By Hg2+

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The goal of this study was to investigate the isolated and combined effect of ebselen and Hg2+ on calcium influx and on glutamatergic system. We examined the in vitro effects of 2 phenyl-1,2-benzisoselenazol-3(2H)-ona), (Ebselen) on 45Ca2+ influx in synaptosomes of rat at rest and during depolarization and glutamate uptake into synaptosomes. Entry of 45Ca was measured during exposure to mercury in non-depolarizing and depolarizing solutions. Ebselen abolished the inhibition of 45Ca2+ influx on non-depolarizing conditions; however, ebselen did no modify inhibition uptake of 45Ca2+caused by Hg2+ in high K+ depolarizing medium. Ebselen did not modify glutamate uptake inhibition caused by Hg2+ in synaptosomes. These results indicate that ebselen has an in vitro protective effect against Hg2+ induced inhibition of Ca2+ influx into synaptosomes, depending on the depolarizing conditions of the assay. The effects of Hg2+ on glutamate uptake were not modified by ebselen, suggesting that its protection is dependent on the target protein considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. WHO, Environmental Health Criteria 101:1990. Methylmercury, World Health Organization, Geneve.

    Google Scholar 

  2. Clarkson, T. W. 1997. The toxicology of mercury. Crit Rev. Clin. Lab. Sci., 34:369-403.

    Google Scholar 

  3. Goldman L. R. and Shannon, M. W. 2001. American Academy of Pediatrics:Committee on Environmental Health Technical report:mercury in the environment:Implications for pediatricians. Pediatrics, 108:197-205.

    Google Scholar 

  4. El-Demerdash, F. M. 2001. Effects of selenium and mercury on the enzymatic activities and lipid peroxidation in brain, liver, and blood of rats. J. Environ. Sci. Health, B 36:489-499.

    Google Scholar 

  5. Tchounwou, P. B., Aysun, W. K., Ninashvili, N., and Sutton, D. 2003. Environmental exposure to Mercury and its toxicopathologic implications for public health. Environ Toxicol. 18:49-75.

    Google Scholar 

  6. Klein, R., Sheldon, P. H., Brubaker, P. E., and Lucier, G. W. 1972. A model of acute methyl mercury intoxication in rats. Arch Pathol. 93:408-429.

    Google Scholar 

  7. Levesque, P. C., Hare, M. F., and Atchison, W. D. 1992. Inhibition of mitochondrial Ca2+ release diminishes the effectiveness of methyl mercury to release acetylcholine from synaptosomes. Toxicol Appl. Pharmacol. 115:11-20.

    Google Scholar 

  8. Rocha, J. B. T., Pereira, M. E., Emanuelli, T., Christofari, R. S., and Souza, D. O. 1995. Effect of treatment with mercury chloride and lead acetate during the second stage of rapid postnatal brain growth on δ-aminolevulinic acid dehydratase (ALA-D)activity in brain liver, kidney and blood of suckling rats. Toxicology 1001(3):27-37.

    Google Scholar 

  9. Hrdina, P. D., Peters, D. A. V., and Singhal, R. L. 1976. Effects of chronic exposure to cadmium, lead and mercury on brain biogenic amines in the rat. Res. Comm. in Chem. Pathol. Pharmacol. 15:483-493.

    Google Scholar 

  10. Denny M. F. and Atchison, W. D. 1996. Mercurial-induced alterations in neuronal divalent cation homeostasis. Neuro-Toxicology 17:47-62.

    Google Scholar 

  11. Nicotera, P., Bellomo, G., and Orrenius S. 1992. Calcium mediated mechanisms in chemically induced cell death. Ann. Rev. Pharmacol Toxicol. 32:449-70.

    Google Scholar 

  12. Atchison, W. D. and Hare, M. F. 1994. Mechanisms of methylmercury-induced neurotoxicity. FASEB J. 8:622-629.

    Google Scholar 

  13. Costa, L. G. 1998. Signal transduction in environmental neurotoxicity. Annu. Rev. Pharmacol Toxicol. 38:21-43.

    Google Scholar 

  14. Sirois, J. E. and Atchison, W. D. 1996. Effects of mercurials on ligand-and voltage-gated ion channels: A review. Neuro-Toxicology 17:63-84.

    Google Scholar 

  15. Hewett, S. J. and Atchison, W. D. 1992. Effects of charge and lipophilicity on mercurial-induced reduction of 45Ca2+ uptake in isolated nerve terminals of the rat. Toxicol Appl. Pharmacol. 113:267-273.

    Google Scholar 

  16. Busselberg, D. 1995. Calcium channels as target sites of heavy metals. Toxicol. Lett. 82–83:255-261.

    Google Scholar 

  17. Rossi, A. D., Larsson, O., Manzo, L., Orrenius, S., Vahter, M, Berggren P., and Nicotera, P. 1993 Modifications of Ca2+ signaling by inorganic mercury in PC12 cells. FASEB J. 7:1507-1514.

    Google Scholar 

  18. Hare, M., and Cooper, G. P., and Minnema, D. 1986. Effects of mercury on neurotransmitter release in rat striatal synaptosomes and frog skeletal neuromuscular junction. Toxicology 6:195-201.

    Google Scholar 

  19. Atchison, W. D. 1987. Effects of activation of sodium and cal-cium entry on spontaneous release of acetylcholine induced by methylmercury. J. Pharmacol. Exp. Ther. 241:131-139.

    Google Scholar 

  20. Kapoor, V., Nakahara, D., Blood, R., and Chalmers, J. P. 1990. Preferential release of neuroactive aminoacids from the ventrolateral medulla of the rat in vivo as measured by microdialysis. Neuroscience 37:187-191.

    Google Scholar 

  21. Rajjanna, B. and Hobson, M. 1995. Influence of mercury on uptake of ( 3H)-dopamine and (3H)-norepinephrine by rat brain synaptosomes. Toxicol. Lett., 27:7-14.

    Google Scholar 

  22. Gassó, S., Suñol, C., Sanfeliu, C, Rodriguez-Farré, E., and Cristófol, R. M. 2000. Pharmacological characterization of the effects of methylmercury and mercuric chloride on spontaneous noradrenaline release from rat hippocampal slices. Life Sciences 67:1219-1231.

    Google Scholar 

  23. Danbolt, N. C. 2001. Glutamate uptake. Prog. Neurobiol. 65:1-105.

    Google Scholar 

  24. Brookes, N. 1988. Specificity and reversibility of the inhibition by HgCl2 of glutamate transport in astrocyte cultures. J. Neurochem. 5094:1117-22.

    Google Scholar 

  25. Kim, P. and Choi, B. H. 1995. Selective inhibition of glutamate uptake by mercury in cultured mouse astrocytes. Yonsei Med. J. 36:299-305.

    Google Scholar 

  26. Albrecht J. and Matyja E., 1996. Glutamate:A potential mediator of inorganic mercury neurotoxicity. Metab. Brain. Dis. 11:175-84.

    Google Scholar 

  27. Yallapragada, P. R., Rajanna, S., Fail, S., and Rajanna, B. 1996. Inhibition of calcium transport by mercury salts in rat cerebellum and cerebral cortex in vitro. J. Appl. Toxicol. 16:325-330.

    Google Scholar 

  28. Juárez, B. I., Martinez, M. L., Montante, M., Dufour, L., Garcia, E., and Jiménez-Capdeville, M. E. 2002. Methylmercury increases glutamate extracellular levels in frontal córtex of awake rats, Neurotoxicol. Teratol. 5516:1-5.

    Google Scholar 

  29. Wang, J. F., Komarov, P., Sies., and H. de Groot, H. 1992. Inhibition of superoxide and nitric oxide release and protection from reoxygenation injury by Ebselen in rat Kupfeer cells. Hepatology 15:1112-6.

    Google Scholar 

  30. Parnham, M. and Sies, H. 2000. Ebselen:prospective therapy for cerebral ischaemia. Expert Opin. Investig. Drugs 9:607-619.

    Google Scholar 

  31. Gladilin, S., Bidmon, H. J., Divanach, A., Arteel, G. E., Witte, O. W., Zilles, K., and Sies, H. 2000. Ebselen lowers plasma interleukin-6 levels and glial heme oxygenase-1 expression after focal photothrombotic brain ischemia. Arch Biochem Biophys. 15:237-242.

    Google Scholar 

  32. Rossato, J. I., Zeni, G., Mello, C. F., Rubin, M. A., and Rocha, J. B. T. 2002. Ebselen blocks the quinolinic acid-induced production of thiobarbituric acid reactive species but does not prevent the behavioral alterations produced by intra-striatal quinolionic acid administration in the rat. Neurosci. Lett. 318:137-140.(a)

    Google Scholar 

  33. Rossato, J. L., Ketzer, L. A., Centuriaõo, F. B., Silva, S. J. N., Ludtke, D. S., Zeni, G., Braga A. L., Rubin, M. A., and Rocha, J. B. T. 2002. Antioxidant properties of new chalcogenides against lipid peroxidation in rat brain. Neurochem Res. 27:297-303.

    Google Scholar 

  34. Nogueira, C. W., Quinhones, E. B., Jung, E. A., Zeni, G., and Rocha, J. B. T. 2003. Anti-inflammatory and antinociceptive activity of diphenyldiselenide. Inflamm. Res. 52:56-63.

    Google Scholar 

  35. Sies, H. 1993. Ebselen, a selenoorganic compound as glutathione peroxidase mimic. Free Radic Biol. Med. 14:313-323.

    Google Scholar 

  36. Dawson, D. A., Masayasu, H., Graham, D. I., and Macrae, I. M. 1995. The neuroprotective eficacy of ebselen (a glutathione peroxidase mimic)on brain damage induced by transient focal cerebral ischaemia in the rat. Neurosc. Lett. 185:65-69.

    Google Scholar 

  37. Yamaguchi, T., Sano, K., Takakura, K., Saito, I., Shinohara, Y., Asano, T., and Yasuhara, H. 1998. Ebselen in acute ischemic stroke:a placebo-controlled, double-blind clinical trial. Stroke 29:12-17.

    Google Scholar 

  38. Davalos, A. 1999. New treatments in cerebrovascular diseases. Neurologia 14:77-83.

    Google Scholar 

  39. Namura, S., Nagata, I., Takami, S., Masayasu, H., and Kikuchi, H. 2001. Ebselen reduces cytochrome c release from mito-chondria and subsequent DNA fragmentation after transient focal cerebral ischemia in mice. Stroke 32:1906-11.

    Google Scholar 

  40. Farina, M., Dahm, K. C. S., Schwalm, F. D., Brusque, A. M., Frizzo, M. E. S., Zeni, G., Souza, D. O., and Rocha, J. B. T. 2003. Methylmercury increases glutamate release from brain synaptosomes and glutamate uptake by cortical slices from suckling rat pups:modulatory effect of ebselen. Toxicol Sci. 73:135-140(a)

    Google Scholar 

  41. Farina, M., Frizzo, M. E., Soares, F. A., Schwalm, F. D. Dietrich, M. O., Zeni, G., Rocha, J. B. T., and Souza, D. O. 2003. Ebselen protects methylmercury-induced inhibition of glutamate uptake by cortical slices from adult mice. Toxicol Lett. 144:351-7. (b)

    Google Scholar 

  42. Moretto, M. B., Rossato, J. I., Nogueira, C. W., Zeni, G., and Rocha, J. B. T. 2003. Voltage-dependent Ebselen and diorganochalcogenides inhibition of 45Ca2+ influx into brain synaptosomes is voltage-dependent. J. Biochem. Molecular Toxicol. 17:154-160.

    Google Scholar 

  43. Engman, L. 1959. Expedient synthesis of Ebselen and related compounds. J. Org. Chem. 54:2964-2966.

    Google Scholar 

  44. Rocha, J. B. T., Mello, C. F., Sarkis, J. J. F., and Dias, R. D. 1990. Undernutrition during the preweaning period changes calcium ATPase and ADPase activities of synaptosomal fractions of weaning rats. Brit. J. Nutr. 63:273-283.

    Google Scholar 

  45. Bradford, M. M. 1976. A rapid and sensitive method for quantitative of microgram quantities of protein utilizing the principle of protein dye dinding. Anal Biochem. 72:248-254.

    Google Scholar 

  46. Eason, K. E. and Aronstam, R. S. 1984. Influence of sulfhydryl reagents on potassium-stimulated calcium uptake by rat brain synaptosomes. Res. Comm. Chem. Pathol. and Pharmacol. 44:503-506.

    Google Scholar 

  47. Shank, R. P. and Campbell, G. L. 1984. ά Ketoglutarate and Malate Uptake and Metabolism by Synaptosomes:Further Evidence for an Astrocyte-to-Neuron Metabolic shuttle. J. Neurochem. 42:1153-1161.

    Google Scholar 

  48. Sirois, J. E. and Atchison, W. D. 2000. Methylmercury affects multiple subtypes of calcium channels in rat cerebellar granule cells. Toxicol Appl. Pharmacol. 167:1-11.

    Google Scholar 

  49. Nachshen, D. A. 1984. Selectivity of the Ca ++ binding site in synaptosome Ca ++ channels. Inhibition of Ca influx by multivalent metal cations. J. Gen. Physiol. 83:941-967.

    Google Scholar 

  50. Kauppinen, R. A., Komulainen, H., and Taipale, H. T. 1989. Cellular mechanisms underlying the increase in cytosolic free calcium concentration induced by methylmercury in cerebrocortical synaptosomes from guinea pig. J. Pharmacol. Exp. Ther. 248:1248-1254.

    Google Scholar 

  51. Atchison, W. D. 1986. Extracellular calcium-dependent and—independent effects of methylmercury on spontaneous and potassium-evoked release of acetylcholine at the neuromuscular junction. J. Pharmacol. Exp. Ther. 237:672-680.

    Google Scholar 

  52. Aschner, M., Eberle, N. B., Miller, K., and Kimelberg, H. K. 1990. Interactions of methylmercury with rat primary astrocyte cultures—inhibition of rubidium and glutamate uptake and induction of swelling. Brain Res. 530:245-250.

    Google Scholar 

  53. Nagaraja, T. N. and Brookes, N., 1996. Mercuric chloride uncouples glutamate uptake from the countertransport of hydroxyl equivalents. Am. J. Physiol. 40C:1487-C-1493.

    Google Scholar 

  54. Bosch-Morell, F., Roma, J., Puertas, F. J., Marin, N., Diaz-Llopis M., and Romero, F. J. 1999. Efficacy of the anti-oxidant ebselen in experimental uveitis. Free. Rad. Biol. Med. 27(3-4):388-91.

    Google Scholar 

  55. Bosch-Morell, F., Roma, J., Marin, N., Romero, B., Rodriguez-Galietero A., Johnsen-Soriano, S., Diaz-Llopis, M., and Romero, F. J. 2002. Role of oxygen and nitrogen species in experimental uveitis:Anti-inflammatory activity of the synthetic antioxidant ebselen. Free Radic. Biol. Med. 1, 33(5):669-75

    Google Scholar 

  56. Cotgreave, I. A., Duddy, S. K., Kass, G. E. N., Thompson, D., and Moldeus, P. 1989. Studies on the anti-inflammatory activity of ebselen—ebselen interferes with granulocyte oxidative burst by dual inhibition of NADPH oxidase and protein kinase C. Biochem. Pharmacol. 38(4):649-656.

    Google Scholar 

  57. Hattori, R., Inoue, R., Sase, K., Eizawa, H., Kosuga, K., Aoyama, T., Masayasu, H., Kawai, C., Sasayama, S., and Yui, Y. 1994. Preferential inhibition of inducible nitric oxide synthase by ebselen. Eur. J. Pharmacol. 267:R1-R2.

    Google Scholar 

  58. Schewe, C., Schewe, T., and Wendel, A. 1994. Strong inhibition of mammalian lipoxygenases by the anti-infl ammatory seleno-organic compound ebselen in the absence of glutathione. Biochem. Pharmacol. 48:65-74.

    Google Scholar 

  59. Takasago T., Peters, E. E., Graham, D. I., Masayasu, H., and Macrae, I. M. 1997. Neuroprotective efficacy of ebselen, an anti-oxidant with anti-inflammatory actions, in a rodent model of permanent middle cerebral artery occlusion. Br. J. Pharmacol. 122(6):1251-6.

    Google Scholar 

  60. Mugesh, G., du Mont, W. W., and Sies, H. 2001. Chemistry of biologically important synthetic organoselenium compounds. Chem. Rev. 101(7):2125-2179.

    Google Scholar 

  61. Zhao R. and Holmgren, A. 2002. A novel antioxidant mechanism of ebselen involving ebselen diselenide, a substrate of mammalian thioredoxin and thioredoxin reductase. J. Biol. Chem. 277(42):39456-62.

    Google Scholar 

  62. Zhao, R., Masayasu, H., and Holmgren, A. 2002. Ebselen:a substrate for human thioredoxin reductase strongly stimulating its hydroperoxide reductase activity and a superfast thior-edoxin oxidant. Proc Natl. Acad. Sci. 99(13):8579-84.

    Google Scholar 

  63. Binah, O., Meiri, U., and Rahamimoff. 1978. The effects of HgCl2 and mersalyl on mechanisms regulating intracellular calcium and transmitter release. Eur J. Pharmacol. 51(4):453-7.

    Google Scholar 

  64. Levesque, P. C., Atchison, W. D. 1991. Disruption of brain mitochondrial calcium sequestration by methylmercury. J. Pharmacol Experim. Therap. 256(1):236-242.

    Google Scholar 

  65. Ichida, S., Kuo, C. H., and Yoshida, H. 1980. Subsynaptosomal distribution of 45Ca++ taken up by synaptosomes in high-potassium mediumn. Neurochem Res. 5(4):433-9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moretto, M.B., Franco, J., Posser, T. et al. Ebselen Protects Ca2+ Influx Blockage But Does Not Protect Glutamate Uptake Inhibition Caused By Hg2+ . Neurochem Res 29, 1801–1806 (2004). https://doi.org/10.1023/B:NERE.0000042205.08917.f2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000042205.08917.f2

Navigation