Skip to main content
Log in

Stimulation of the Lateral Hypothalamus Provokes the Initiation of Robust Long-Term Potentiation of the Thalamo-Cortical Input to the Barrel Field of the Adult, Freely Moving Rat

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Long-term potentiation in the thalamo-cortical input to the somatosensory cortex barrel field has been reported to be inducible in vitro only during a narrow critical period of the first postnatal week. Here we explored whether this is due to inability of adult synapses to express LTP or lack of appropriate conditions for LTP induction in slice preparations. We recorded thalamo-cortical field potentials (FPs) from the barrel field of chronically prepared adult rats. In the first series, several parameters of conditioning tetanization of thalamus (T) have been tried. Statistically significant LTP of 135–150% relative to the baseline was observed only in rare cases (3/18) so that the mean changes were not statistically significant. In the second series, five trains of 100 Hz stimulation of T were paired with a “reinforcing” stimulation of the lateral hypothalamus (LH). In most cases (9/13), thalamo-cortical FPs were potentiated. The mean post-tetanic amplitude was 238 ± 42% (±SEM relative to the baseline (n= 13). The potentiation persisted for >1 h and typically even further increased when tested 24–48 h later. LTP magnitude strongly correlated with the initial paired-pulse ratio (PPR, coefficient of correlation r= 0.98) so that the LTP magnitude was larger (333 ± 107, n= 6) in cases with PPR > 1.3. The mean PPR tended to decrease after LTP (from 2.05 to 1.65). Altogether the results suggest that LTP is inducible in the thalamo-cortical input to the barrel field of normal adult rats. The dependence of the LTP magnitude upon the initial PPR suggests that inputs with low initial release probability undergo larger LTP. Together with the tendency to a decrease in the PPR this suggests an involvement of presynaptic mechanisms in the maintenance of neocortical LTP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. J. M. Armstrong, M. E. Diamond, and F. F. Ebner, “An innocuous bias in whisker use in adult rats modifies receptive fields of barrel cortex neurons,” J. Neurosci., No. 14, 6978–6991 (1994).

    Google Scholar 

  2. A. Artola and W. Singer, “Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation,” Trends Neurosci., 16, No. 11, 480–487 (1993).

    Google Scholar 

  3. C. H. Bailey, M. Giustetto, Y.-Y. Huang, et al., “Is heterosynaptic modulation essential for stabilizing Hebbian plasticity and memory?” Nature Rev., No. 1, 11–20 (2001).

    Google Scholar 

  4. I. Bayazitov and A. Kleschevnikov, “Afferent high strength tetanizations favour potentiation of the NMDA vs. AMPA receptor-mediated component of field EPSP in CA1 hippocampal slices of rats,” Brain Res., 866, 188–196 (2000).

    Google Scholar 

  5. M. F. Bear, “NMDA-receptor-dependent synaptic plasticity in the visual cortex,” Prog. Brain Res., 108, 205–218 (1996).

    Google Scholar 

  6. T. V. P. Bliss and G. L. Collingridge, “A synaptic model for memory: long-term potentiation in the hippocampus,” Nature, 361, 31–39 (1993).

    Google Scholar 

  7. T. E. Boyd, C. Trepel, and R. J. Racine, “Cholinergic modulation of neocortical long-term potentiation in the awake, freely moving rat,” Brain Res., 881, No. 1, 28–36 (2000).

    Google Scholar 

  8. P. M. Cahusac, “Synaptic plasticity induced in single neurones of the primary somatosensory cortex in vivo,” Exp. Brain Res., 107, 241–253 (1995).

    Google Scholar 

  9. C. A. Chapman, C. Trepel, T. L. Ivanco, et al., “Changes in field potentials and membrane currents in rat sensorimotor cortex following repeated tetanization of the corpus callosum in vivo,” Cereb. Cortex, 8, No. 8, 730–742 (1998).

    Google Scholar 

  10. S. Choi, J. Klingauf, and R. W. Tsien, “Postfusional regulation of cleft glutamate concentration during LTP at “silent synapses”,” Nat. Neurosci., 3, 330–336 (2000).

    Google Scholar 

  11. M. C. Crair and R. C. Malenka, “A critical period for longterm potentiation at thalamocortical synapses,” Nature, 375, 325–328 (1995).

    Google Scholar 

  12. F. A. Edwards, “Anatomy and electrophysiology of fast central synapses lead to a structural model for long-term potentiation,” Physiol Rev., 75, No. 4, 759–787 (1995).

    Google Scholar 

  13. V. Ego-Stengel, De. Shulz, S. Haidarliu, et al., “Acetylcholinedependent induction and expression of functional plasticity in the barrel cortex of the adult rat,” J. Neurophysiol., 86, No. 1, 422–437 (2001).

    Google Scholar 

  14. V. L. Ezrokhi, V. A. Zosimovskii, V. A. Korshunov, and V. A. Markevich, “Restoration of decaying long-term potentiation in the hippocampal formation by stimulation of neuromodulatory nuclei in freely moving rats,” Neuroscience, 88, No. 3, 741–753 (1999).

    Google Scholar 

  15. D. E. Feldman, R. A. Nicoll, and R. C. Malenka, “Synaptic plasticity at thalamocortical synapses in developing rat somatosensory cortex: LTP, LTD, and silent synapses,” J. Neurobiol., 41, 92–101 (1999).

    Google Scholar 

  16. K. Fox, “The role of excitatory amino acid transmission in development and plasticity of SI barrel cortex,” Prog. Brain Res., 108, 219–234 (1996).

    Google Scholar 

  17. S. Frey, J. Bergado-Rosado, T. Seidenbecher, et al., “Reinforcement of early long-term potentiation (early-LTP) in dentate gyrus by stimulation of the basolateral amygdala: heterosynaptic induction mechanisms of late-LTP,” J. Neurosci., 21, No. 10, 3697–3703 (2001).

    Google Scholar 

  18. U. Frey and R. G. M. Morris, “Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation,” Trends Neurosci., 21, 181–188 (1998).

    Google Scholar 

  19. D. J. Froc, C. A. Chapman, C. Trepel, and R. J. Racine, “Longterm depression and depotentiation in the sensorimotor cortex of the freely moving rat,” J. Neurosci., 20, 438–445 (2000).

    Google Scholar 

  20. S. Gasparini, C. Saviane, L. L. Voronin, and E. Cherubini, “Silent synapses in the developing hippocampus: Lack of functional AMPA receptors or low probability of glutamate release?” Proc. Nat. Acad. Sci. USA, 97, 9741–9746 (2000).

    Google Scholar 

  21. A. J. Heinen and M. F. Bear, “Long-term potentiation of thalamocortical transmission in the adult visual cortex in vivo,” J. Neurosci., 21, 9801–9813 (2001).

    Google Scholar 

  22. J. T. R. Isaac, M. C. Crair, R. A. Nicoll, and R. C. Malenka, “Silent synapses during development of thalamocortical inputs,” Neuron., 18, 269–280 (1997).

    Google Scholar 

  23. A. M. Kleschevnikov, M. Sokolov, U. Kuhnt, et al., “Changes in paired-pulse facilitation correlated with induction of long-term potentiation in area CA1 of rat hippocampal slices,” Neuroscience, 76, 829–843 (1997).

    Google Scholar 

  24. A. M. Kleschevnikov, U. Kuhnt, and L. L. Voronin, “Quantal analysis of a late phase of long-term potentiation in the guinea pig hippocampal slices: sharp microelectrode recordings,” Neurosci. Res. Commun., 30, 7–25 (2002).

    Google Scholar 

  25. J. F. R. Konig and R. A. Klippel, The Rat Brain. A Stereotaxic Atlas of the Forebrain and Lower Parts of the Brain Stem, Acad. Press, Baltimore (1963), 162 pp.

    Google Scholar 

  26. U. Kuhnt and L. L. Voronin, “Interaction between paired-pulse facilitation and long-term potentiation in area CA1 of guinea pig hippocampal slices: application of quantal analysis,” Neuroscience, 62, 391–397 (1994).

    Google Scholar 

  27. D. M. Kullmann, “Amplitude fluctuations of dual-component EPSCs in hippocampal pyramidal cells: implications for long-term potentiation,” Neuron, 12, 1111–1120 (1994).

    Google Scholar 

  28. A. Larkman, T. Hannay, K. Stratford, and J. Jack, “Presynaptic release probability influences the locus of long-term potentiation,” Nature, 360, 70–73 (1992).

    Google Scholar 

  29. R. C. Malenka and R. A. Nicoll, “Long-term potentiation. — A decade of progress?” Science, 285, 1870–1874 (1999).

    Google Scholar 

  30. R. Malinow, Z. F. Mainen, and Y. Hayashi, “LTP-mechanisms: from silence to four-lane traffic,” Curr. Opin. Neurobiol., 10, 352–357 (2000).

    Google Scholar 

  31. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, F1: Acad. Press, Orlando (1986), 136 pp.

    Google Scholar 

  32. R. J. Racine, G. C. Teskey, D. Wilson, et al., “Post-activation potentiation and depression in the neocortex of the rat: II. Chronoc prepapations,” Brain Res., 637, 83–96 (1994).

    Google Scholar 

  33. R. J. Racine, C. A. Chapman, C. Trepel, et al., “Post-activation potentiation in the neocortex: and depression in the neocortex of the rat: IV. Multiple sessions required for induction of long-term potentiation in the chronic preparation,” Brain Res., 702, 87–93 (1994).

    Google Scholar 

  34. J. J. Renger, C. Egles, and G. Liu, “A developmental switch in neurotransmitter flux enhances synaptic efficacy by affecting AMPA receptor activation,” Neuron, 29, 469–484 (2001).

    Google Scholar 

  35. S. Rumpel, H. Hatt, and K. Gottmann, “Silent synapses in developing rat visual cortex: evidence for postsynaptic expression of synaptic plasticity,” J. Neurosci., 18, 8863–8874 (1998).

    Google Scholar 

  36. P. E. Schulz, E. P. Cook, and D. Johnson, “Changes in paired-pulse facilitation suggest presynaptic involvement in long-term potentiation,” J. Neurosci., 14, 5325–5337 (1994).

    Google Scholar 

  37. M. V. Sokolov, A. V. Rossokhin, T. Behnisch, et al., “Interaction between paired-pulse facilitation and long-term potentiation of minimal EPSPs in rat hippocampal slices: a patch clamp study,” Neuroscience, 85, 1–13 (1998).

    Google Scholar 

  38. N. Torii, T. Tsumoto, L. Uno, et al., “Quantal analysis suggests presynaptic involvement in expression of neocortical short-and long-term depression,” Neuroscience, 79, 317–321 (1997).

    Google Scholar 

  39. C. Trepel and R. J. Racine, “Long-term potentiation in the neocortex of the adult, freely moving rat,” Cereb. Cortex, 8, 719–729 (1998).

    Google Scholar 

  40. T. Tsumoto, “Long-term potentiation and long-term depression in the neocortex,” Prog. Neurobiol., 39, 209–228 (1992).

    Google Scholar 

  41. M. Volgushev, L. L. Voronin, M. Chistiakova, and W. Singer, “Relations between long-term synaptic modifications and pairedpulse interactions in the rat neocortex,” Eur. J. Neurosci., 7, 1751–1760 (1997).

    Google Scholar 

  42. L. L. Voronin, “A study of synaptic plasticity at archicortical and neocortical levels,” Neurophysiology, 16, 651–665 (1984).

    Google Scholar 

  43. L. L. Voronin, “On the quantal analysis of hippocampal long-term potentiation and related phenomena of synaptic plasticity,” Neuroscience, 56, 275–304 (1993).

    Google Scholar 

  44. L. L. Voronin and S. V. Ioffe, “Changes in unit postsynaptic responses at sensorimotor cortex with conditioning in rabbits,” Acta Neurobiol Exp, Warsz, 34, 504–513 (1974).

    Google Scholar 

  45. L. L. Voronin, U. Kuhnt, and G. Hess, “A quantum analysis of the long-term post-tetanic changes in the minimal postsynaptic potentials in surviving hippocampal slices,” Neirofiziologiya/Neurophysiology, 22, No. 6, 752–761 (1990).

    Google Scholar 

  46. L. L. Voronin and V. A. Markevich, “Conditioned reflex analogue with registration of pyramidal tract response to direct cortical stimulation,” Dokl. Biol. Sci., 253, 1005–1009 (1980).

    Google Scholar 

  47. L. L. Voronin and V. A. Markevich, “A neural analog of conditioning: modifications of pyramidal tract response,” in: Conditioning: Representation of Involved Neural Functions. Advances in Behavioral Biology, C. Woody (ed.), 26, 663–676, Plenum, N. Y. (1982).

    Google Scholar 

  48. L. Voronin, A. Byzov, A. Kleschevnikov, et al., “Neurophysiological analysis of long-term potentiation in mammalian brain,” Behav. Brain Res., 66, 45–52 (1995).

    Google Scholar 

  49. T. A. Woolsey and H. Van der Loos, “The structural organization of layer IV in the somatosensory region (SI) of the mouse cerebral cortex,” Brain Res., 17, 204–242 (1970).

    Google Scholar 

  50. R. S. Zucker, “Short-term synaptic plasticity,” Ann. Rev. Neurosci., 12, 13–31 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ezrokhi, V.L., Korshunov, V.A., Markevich, V.A. et al. Stimulation of the Lateral Hypothalamus Provokes the Initiation of Robust Long-Term Potentiation of the Thalamo-Cortical Input to the Barrel Field of the Adult, Freely Moving Rat. Neurosci Behav Physiol 34, 919–927 (2004). https://doi.org/10.1023/B:NEAB.0000042651.41720.82

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEAB.0000042651.41720.82

Navigation