Skip to main content
Log in

The Central Nucleus of the Amygdaloid Body of the Brain: Cytoarchitectonics, Neuronal Organization, Connections

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

This review considers the questions of the structural-functional organization of the central nucleus (CN) of the amygdaloid body (AB) of the brain in relation to new data on its involvement in the formation of stress reactions and adaptive behavior in animals. Data are presented on the distribution of neuropeptides, neurotransmitters, and modulators in the CN. It is noted that the CN, appearing at the earliest stages of establishment of the AB, is reorganized with it and reflects the evolution of the whole AB. Detailed data are presented on the cytoarchitectonics of the CN of the AB, its heteromorphousness, and subdivision into zones (subnuclei) based on the use of different study methods and assessment criteria. The neuronal organization of the CN and its subnuclei is considered; detailed descriptions of different types of neurons are provided, with consideration of their topographies, sizes, and shapes and of their perikarya, the orientation and type of branching of their dendrites, the organization of the spine apparatus, and axon structure. The characteristics of the development of the CN of the AB in the ontogenesis of mammals and man are discussed. Analysis of published data and our own results supports the role of the CN not only as an intra-amygdalar integrative center, but also as one of the major channels for the afferent and efferent connections of the AB with the rest of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. I. G. Akmaev and L. B. Kalimullina, The Amygdaloid Complex of the Brain: Functional Morphology and Neuroendocrinology [in Russian], Nauka, Moscow (1993).

    Google Scholar 

  2. V. A. Bagaev, O. A. Lyubashina, and S. S. Panteleev, “Bulbar mechanisms of the vagovagal reflex,” Arkh. Klin. Éksper. Med., 9,No. 11, 25–30 (2000).

    Google Scholar 

  3. A. A. Zavarzin, Studies on the Theory of Parallelism and the Evolutionary Dynamics of Tissues [in Russian], Nauka, Leningrad (1986).

    Google Scholar 

  4. R. Yu. Il'yuchenok, M. A. Gilinskii, L. V. Loskutova, et al., The Amygdaloid Complex (Connections, Behavior, Memory) [in Russian], Nauka, Novosibirsk (1981).

    Google Scholar 

  5. T. A. Leontovich, Neuronal Organization of the Subcortical Formations of the Forebrain [in Russian], Meditsina, Moscow (1978).

    Google Scholar 

  6. G. Ya. Liberzon, “Ontogenesis of the amygdaloid complex of the brain,” Arkh. Anat., 17,No. 2–3, 290–308 (1937).

    Google Scholar 

  7. O. A. Lyubashina, Mechanism of Involvement of the Central Nucleus of the Amygdala in Modulating the Reflex Motor Activity of the Stomach [in Russian], Author's abstract of thesis for doctorate in biological sciences, St. Petersburg (2001).

  8. O. A. Kyubashina and A. D. Nozdrachev, “Effects of stimulation of different areas of the central nucleus of the amygdala on performance of the vagovagal reflex,” Dokl. Ros. Akad. Nauk., 367,No. 6, 342–350 (1999).

    Google Scholar 

  9. I. N. Filimonov, Selected Works [in Russian], Meditsina, Moscow (1974).

    Google Scholar 

  10. S. A. Chepurnov and N. E. Chepurnova, The Amygdaloid Complex of the Brain [in Russian], Moscow State University Press, Moscow (1981).

    Google Scholar 

  11. L. A. Sharipova and L. B. Kalimullina, “Multidimensional analysis of neurons in the subnuclei of the central nucleus of the amygdaloid body of the brain,” Morfologiya, 6, 16–19 120 (2001).

    Google Scholar 

  12. V. T. Shuvaev and N. F. Suvorov, The Basal Ganglia and Behavior [in Russian], Nauka, St. Petersburg (2001).

    Google Scholar 

  13. J. P. Aggletonn, “A description of intra-amygdaloid connections in ole world monkeys,” Exptl. Brain Res., 57,No. 2, 390–399 (1985).

    Google Scholar 

  14. M. Alden, J. M. Besson, and J. F. Bernard, “Organization of the efferent projections from the pontine parabrachial area to the bed nucleus of the stria terminalis and neighboring regions: a PHA-L study in the rat,” J. Comp. Neurol., 341,No. 3, 289–295 (1994).

    Google Scholar 

  15. S. A. Bayer, “Quantitative 3H-thymidine radiographic analysis of neurogenesis in the rat amygdala,” J. Comp. Neurol., 194,No. 4, 845–875 (1980).

    Google Scholar 

  16. A. Brodal, “The amygdaloid nucleus in the rat,” Brain, 70, 179–224 (1947).

    Google Scholar 

  17. S. Campleau and M. Davis, “Involvement of the central nucleus and basolateral complex of the amygdala in fear conditioning measured with fear potentiated startle in rats trained concurrently with auditory and visual conditioned stimuli,” J. Neurosci., 3,No. 2, 2301–2305 (1995).

    Google Scholar 

  18. M. D. Cassel, T. S. Gray, and J. Z. Kiss, “Neuronal architecture in the rat central nucleus of the amygdala: a cytological, histological and immunocytochemical study,” J. Comp. Neurol., 246,No. 4, 478–499 (1986).

    Google Scholar 

  19. T. S. Gray and D. J. Magnuson, “Peptide immunoreactive neurons in the amygdala and bed nucleus of the stria terminalis project to the midbrain central gray in the rat,” Peptides, 13,No. 3, 451–458 (1992).

    Google Scholar 

  20. L. J. Freedman and M. D. Cassel, “Distribution of dopaminergic fibers in the central division of the extended amygdala of the rat,” J. Brain Res., 633,No. 1–2, 243–246 (1994).

    Google Scholar 

  21. J. L. Fudge and S. N. Haber, “The central nucleus of the amygdala projection to dopamine subpopulations in primates,” Neurosci., 97,No. 3, 479–486 (2000).

    Google Scholar 

  22. T. Humphrey, “The telencephalon of the bat,” J. Comp. Neurol., 65,No. 34, 603–711 (1936).

    Google Scholar 

  23. J. H. Jhamandas, T. Petrov, K. H. Harris, et al., “Parabrachial nucleus projections to the amygdala in the rat: electrophysiological and anatomical observations,” Brain Res. Bull., 39,No. 2, 115–118 (1996).

    Google Scholar 

  24. H. G. Jia, Z. R. Rao, and J. W. Shi, “Evidence of gamma-aminobutyric acidergic control over the catecholaminergic projection from the medulla oblongata to the central nucleus of the amygdala,” J. Comp. Neurol., 381,No. 3, 262–265 (1997).

    Google Scholar 

  25. E. Joikkonen and A. Pitkanen, “Intrinsic connection of the rat amygdaloid complex: projections originating in the central nucleus,” J. Comp. Neurol., 395, 53–60 (1998).

    Google Scholar 

  26. B. R. Kaada, “Stimulation and regional ablation of the amygdaloid complex with reference to functional representations,” in: Neurobiology of the Amygdala, Plenum Press, New York (1972), pp. 205–281.

    Google Scholar 

  27. B. S. Kaap, J. S. Schwaber, and P. A. Driscoll, “Frontal cortex projections to the amygdaloid central nucleus in the rabbit,” J. Neurosci., 15,No. 2, 327–346 (1985).

    Google Scholar 

  28. M. Kozik and J. Szczech, “Histoenzymic investigation of the rat amygdala in the course of ontogenetic development,” Acta Histochem., 56,No. 1, 24–39 (1976).

    Google Scholar 

  29. M. S. Kreiger, L. C. Conrad, and D. W. Pfaff, “An autoradiographic study of the efferent connections of the ventromedial nucleus of the hypothalamus,” J. Comp. Neurol., 183,No. 4, 785–816 (1979).

    Google Scholar 

  30. I. E. Krettek and I. L. Price, “The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat,” J. Comp. Neurol., 171,No. 2, 157–191 (1977).

    Google Scholar 

  31. I. E. Krettek and I. L. Price, “Projections from amygdaloid complex to the cerebral cortex and thalamus in the rat and cat,” J. Comp. Neurol., 172,No. 4, 687–722 (1977).

    Google Scholar 

  32. I. E. Krettek and I. L. Price, “Projections from the subiculum in the rat and cat,” J. Comp. Neurol., 172,No. 4, 723–752 (1977).

    Google Scholar 

  33. I. E. Krettek and I. L. Price, “A description of the amygdaloid complex in the rat and cat with observation on intra-amygdaloid axonal connection,” J. Comp. Neurol., 178,No. 2, 255–280 (1978).

    Google Scholar 

  34. T. L. Krukoff, K. H. Harris, and J. H. Jhamandos, “Efferent projections from the parabrachial nucleus demonstrated with the anterograde tracer Phaseolus vulgaris leucoagglutinin,” Brain Res. Bull., 30,No. 1–2, 163–170 (1993).

    Google Scholar 

  35. A. J. McDonald, “Cytoarchitecture of the central amygdaloid nucleus of the rat,” J. Comp. Neurol., 208,No. 4, 401–408 (1982).

    Google Scholar 

  36. A. J. McDonald and F. Mascagni, “Projections of the lateral entorhinal cortex to the amygdala: a Phaseolus vulgaris leucoagglutinin study in the rat,” Neurosci., 77,No. 2, 445–456 (1997).

    Google Scholar 

  37. Z. Merali, J. McIntosh, O. Kent, et al., “Aversive and appetitive events evoke the release of corticotropin-releasing hormone and bombesin-like peptides at the central nucleus of the amygdala,” J. Neurosci., 18,No. 2, 4758–4763 (1998).

    Google Scholar 

  38. M. Moralis, J. R. Criado, P. P. Sanna, et al., “Acute ethanol induces c-fos immunoreactivity in GABAergic neurons of the central nucleus of the amygdala,” Brain Res., 798,No. 1–2, 333–341 (1998).

    Google Scholar 

  39. L. Nitecka, “Comparative aspects of localization of acetylcholinesterase activity in the amygdaloid body,” Folia Morphol. (PRL), 34,No. 2, 167–185 (1975).

    Google Scholar 

  40. L. Nitecka and C. Jakiel, “Connections of the lateral preoptic hypothalamic area with the amygdaloid nuclei in the rat,” Folia Morphol. (PRL), 37,No. 1, 13–31 (1978).

    Google Scholar 

  41. L. Nitecka, O. Narkiewicz, and H. Zawistowska, “Acetylcholinesterase activity in the nuclei of the amygdaloid complex in the rat,” Acta Neurobiol. Exp., 31,No. 3, 383–388 (1971).

    Google Scholar 

  42. R. Norgren, “Taste pathways to hypothalamus and amygdala,” J. Comp. Neurol., 166,No. 1, 17–30 (1976).

    Google Scholar 

  43. J. L. Olmos and W. R. de Ingram, “The projection field of the stria terminalis in the rat brain: an experimental study,” J. Comp. Neurol., 146,No. 2, 303–334 (1972).

    Google Scholar 

  44. O. P. Ottersen, “Afferent connections to the amygdaloid complex of the rat and cat. 2. Afferents from the hypothalamus and the basal telencephalon,” J. Comp. Neurol., 194,No. 1, 267–289 (1980).

    Google Scholar 

  45. D. Pare, V. Smith, and J. F. Pare, “Intra-amygdaloid projections of the basolateral and basomedial nuclei in the cat: Phaseolus vulgaris-leucoagglutinin anterograde tracing at the light and electron microscopic level,” Neurosci., 69,No. 2, 567–572 (1995).

    Google Scholar 

  46. J. Paredes, R. W. Winters, N. Schneiderman, and P. M. McCabe, “Afferents to the central nucleus of the amygdala and functional subdivisions of the periacqueductal gray: neuroanatomical substrates for affective behavior,” Brain Res., 887,No. 1, 157–164 (2000).

    Google Scholar 

  47. A. Pitkanen, L. Stefanacci, C. R. Farb, et al., “Intrinsic connections of the rat amygdaloid complex: projections originating in the lateral nucleus,” J. Comp. Neurol., 356,No. 2, 288–293 (1995).

    Google Scholar 

  48. M. P. Riccoti, “Sviluppo ed acerescimento del corpo amigdaleo nel ratto albina,” Arch. Ital. Anat. Embriol., 70,No. 1, 157–176 (1965).

    Google Scholar 

  49. J. A. Richardo and T. Koh, “Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala and other forebrain structures in the rat,” Brain Res., 153,No. 1, 1–26 (1978).

    Google Scholar 

  50. J. B. Rosen, J. M. Hitchcock, C. B. Sananes, et al., “A direct projection from the central nucleus of the amygdala to the acoustic startle pathway: anterograde and retrograde tracing studies,” Behav. Neurosci., 105,No. 6, 817–826 (1991).

    Google Scholar 

  51. K. J. Sanderson and P. M. Wilson, “Neurogenesis in septum, amygdala and hippocampus in the marsupial bushtailed possum (Trichosurus vulpecula),” Rev. Bras. Biol., 57,No. 2, 323–335 (1997).

    Google Scholar 

  52. V. Savander, C. G. Go, J. E. LeDoux, and A. Pitkanen, “Intrinsic connection of the rat amygdaloid complex: projections originating in the accessory basal nucleus,” J. Comp. Neurol., 374,No. 2, 291–301 (1996).

    Google Scholar 

  53. J. S. Schwaber, B. S. Kapp, and G. Higgins, “The origin and extent of direct amygdala projections to the region of the dorsal motor nucleus of the vagus and the nucleus of the solitary tract,” Neurosci. Lett., 20,No. 1, 15–20 (1980).

    Google Scholar 

  54. C. J. Shi and M. D Cassel, “Cortical, thalamic, and amygdaloid connection of anterior and posterior insular cortex,” J. Comp. Neurol., 399,No. 4, 440–445 (1998).

    Google Scholar 

  55. Y. Shinonaga, M. Takada, and N. Mizuno, “Direct projections from the central amygdaloid nucleus to the globus pallidus and substantia nigra in the cat,” Neurosci., 51,No. 3, 691–698 (1992).

    Google Scholar 

  56. Y. Takeuchi, S. Matsumshima, R. Matsumshima, and D. Hopkins, “Direct amygdaloid projections to the dorsal motor nucleus of the vagus nerve: a light and electron microscopic study in the rat,” Brain Res., 280,No. 1, 143–147 (1983).

    Google Scholar 

  57. H. J. Ten Donkelaar, G. J. Lammers, and A. M. Cribnau, “Neurogenesis in the amygdaloid nuclear complex in a rodent (the Chinese hamster),” Brain Res., 165,No. 2, 348–353 (1979).

    Google Scholar 

  58. B. H. Turner and M. E. Knapp, “Projections to the nucleus and tracts of the stria terminalis following lesions at the level of the anterior commissure,” Exptl. Neurol., 51,No. 2, 468–479 (1976).

    Google Scholar 

  59. M. Vankova, M. Arluison, V. Levier, and G. Tramu, “Afferent connections of rat substantia nigra pars lateralis with special reference to peptide-containing neurons of the amygdalo-nigral pathway,” J. Chem. Neuroanat., 5,No. 1, 39045 (1992).

    Google Scholar 

  60. J. G. Veening, L. W. Sweanson, and P. E. Sawchenko, “The organization of projections from the central nucleus of the amygdala to brainstem sites involved in central autonomic regulation: A combined retrograde transport-immunohistochemical study,” Brain Res., 303,No. 3, 337–357 (1984).

    Google Scholar 

  61. P. Veinante and M. J. Freund-Mercier, “Intrinsic connections of the rat central extended amygdala: an in vivo electrophysiological study of the central amygdaloid nucleus,” J. Brain Res., 794,No. 2, 188–193 (1998).

    Google Scholar 

  62. D. S. Zahm, S. L. Jensens, E. A. Williams, and J. R. Martin, “Direct comparison of projections from the central amygdaloid region and nucleus accumbens shell,” J. Neurosci., 11,No. 4, 1119–1124 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akmaev, I.G., Kalimullina, L.B. & Sharipova, L.A. The Central Nucleus of the Amygdaloid Body of the Brain: Cytoarchitectonics, Neuronal Organization, Connections. Neurosci Behav Physiol 34, 603–610 (2004). https://doi.org/10.1023/B:NEAB.0000028292.14402.ad

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEAB.0000028292.14402.ad

Navigation