Skip to main content
Log in

The gap1 Operon of the Cyanobacterium SynechococcusPCC 7942 Carries a Gene Encoding Glycogen Phosphorylase and Is Induced under Anaerobic Conditions

  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The cloning and sequencing of the gap1 operon, which encodes the glycolytic NAD-specific glyceraldehyde-3-phosphate dehydrogenase in the cyanobacterium Synechococcus PCC 7942, showed that the gap1 gene is closely linked to the glgP gene encoding glycogen phosphorylase (an enzyme that catalyzes the first step of glycogen degradation). Northern blotting experiments showed that the gap1 and glgP genes are coexpressed and organized in a bicistronic operon, whose expression is enhanced under anaerobic conditions. The nucleotide sequence of the operon has been submitted to GenBank under accession number AF428099.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Koksharova, O.A. and Wolk, C.P., Genetic Tools for Cyanobacteria, Appl. Microbiol. Biotechnol., 2002, vol. 58, pp. 123-137.

    Google Scholar 

  2. Koksharova, O., Schubert, M., Shestakov, S., and Cerff, R., Genetic and Biochemical Evidence for Distinct Key Functions of Two Highly Divergent GAPDH Genes in Catabolic and Anabolic Carbon Flow of the Cyanobacterium Synechocystis sp. PCC 6803, Plant Mol. Biol., 1998, vol. 36, pp. 183-194.

    Google Scholar 

  3. Martin, W., Brinkmann, H., Savona, C., and Cerff, R., Evidence for a Chimeric Nature of Nuclear Genomes: Eubacterial Origin of Eukaryotic Glyceraldehyde-3-Phosphate Dehydrogenase Genes, Proc. Natl. Acad. Sci. USA, 1993, vol. 90, pp. 8692-8696.

    Google Scholar 

  4. Figge, R., Schubert, M., Brinkmann, H., and Cerff, R., Glyceraldehyde-3-Phosphate Dehydrogenase Gene Diversity in Eubacteria and Eukaryotes: Evidence for Intra-and Inter-Kingdom Gene Transfer, J. Mol. Biol. Evol., 1999, vol. 16, pp. 429-440.

    Google Scholar 

  5. Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M., and Stanier, R.Y., Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria, J. Gen. Microbiol., 1979, vol. 111, pp. 1-61.

    Google Scholar 

  6. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor: Cold Spring Harbor Lab., 1989.

    Google Scholar 

  7. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J., Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs, Nucleic Acids Res., 1997, vol. 25, pp. 3389-3402.

    Google Scholar 

  8. Kaneko, T., Sato, S., Kotani, H., Tanaka, A., Asamizu, E., Nakamura, Y., Miyajima, N., Hirosawa, M., Sugiura, M., Sasamoto, S., Kimura, T., Hosouchi, T., Matsuno, A., Muraki, A., Nakazaki, N., Naruo, K., Okumura, S., Shimpo, S., Takeuchi, C., Wada, T., Watanabe, A., Yamada, M., Yasuda, M., and Tabata, S., Sequence Analysis of the Genome of the Unicellular Cyanobacterium Synechocystis sp. Strain PCC 6803: II. Sequence Determination of the Entire Genome and Assignment of Potential Protein-Coding Regions, DNA Res., 1996, vol. 3, pp. 109-136.

    Google Scholar 

  9. Alefounder, P.R. and Perham, R.N., Identification, Molecular Cloning and Sequence Analysis of a Gene Cluster Encoding the Class II Fructose 1,6-Bisphosphate Aldolase, 3-Phosphoglycerate Kinase and a Putative Second Glyceraldehyde 3-Phosphate Dehydrogenase of Escherichia coli, Mol. Microbiol., 1989, vol. 3, pp. 723-732.

    Google Scholar 

  10. Fraenkel, D.G., Glycolysis, Pentose Phosphate Pathway, and Entner-Doudoroff Pathway, Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, Neidhard, F.C. et al., Eds., Washington: Am. Soc. Microbiol, 1987, pp. 142-150.

    Google Scholar 

  11. Branlant, C., Oster, T., and Branlant, G., Nucleotide Sequence Determination of the DNA Region Coding for Bacillus stearothermophilus Glyceraldehyde-3-Phosphate Dehydrogenase and of the Flanking DNA Regions Required for Its Expression in Escherichia coli, Gene, 1989, vol. 75, pp. 145-155.

    Google Scholar 

  12. Schlapfer, B.S. and Zuber, H., Cloning and Sequencing of the Genes Encoding Glyceraldehyde-3-Phosphate Dehydrogenase, Phosphoglycerate Kinase and Triosephosphate Isomerase (gap Operon) from Mesophilic Bacillus megaterium: Comparison with Corresponding Sequences from Thermophilic Bacillus stearothermophilus, Gene, 1992, vol. 122, pp. 53-62.

    Google Scholar 

  13. Schinzel, R. and Nidetzky, B., Bacterial Alpha-Glucan Phosphorylases, FEMS Microbiol., 1999, vol. 171, pp. 73-79.

    Google Scholar 

  14. Kiel, J.A.K.W., Boels, J.M., Beldman, G., and Venema, G., Nucleotide Sequence of the Synechococcus sp. PCC 7942 Branching Enzyme Gene (glgB): Expression in Bacillus subtilis, Gene, 1990, vol. 89, pp. 77-84.

    Google Scholar 

  15. Romeo, T., Kumar, A., and Preiss, J., Analysis of the Escherichia coli Glycogen Gene Cluster Suggests That Catabolic Enzymes Are Encoded among the Biosynthetic Genes, Gene, 1988, vol. 70, pp. 363-376.

    Google Scholar 

  16. Ugalde, J., Lepek, V., Uttaro, A., Estrella, J., Iglesias, A., and Ugalde, R., Gene Organization and Transcriptional Analysis of the Agrobacterium tumefaciens Glycogen (glg) Operon: Two Transcripts for the Single Phosphoglucomutase Gene, J. Bacteriol., 1998, vol. 180, pp. 6557-6564.

    Google Scholar 

  17. Smith, A., Quivey, R., and Faustoferri, R., Cloning and Nucleotide Sequence Analysis of the Streptococcus Mutants Membrane-Bound, Proton-Translocating ATPase Operon, Gene, 1996, vol. 183, pp. 87-96.

    Google Scholar 

  18. Martinez, P., Martin, W., and Cerff, R., Structure, Evolution and Anaerobic Regulation of a Nuclear Gene Encoding Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenase from Maize, J. Mol. Biol., 1989, vol. 208, pp. 551-565.

    Google Scholar 

  19. Liu, M., Yang, Y., and Romeo, T., The Product of the Pleiotropic Escherichia coli Gene csrA Modulates Glycogen Biosynthesis via Effects on mRNA Stability, J. Bacteriol., 1995, vol. 177, pp. 2663-2672.

    Google Scholar 

  20. Romeo, T., Global Regulation by the Small RNA-Binding Protein CsrA and the Non-Coding RNA Molecule CsrB, Mol. Microbiol., 1998, vol. 29, pp. 1321-1330.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koksharova, O.A., Brandt, U. & Cerff, R. The gap1 Operon of the Cyanobacterium SynechococcusPCC 7942 Carries a Gene Encoding Glycogen Phosphorylase and Is Induced under Anaerobic Conditions. Microbiology 73, 326–329 (2004). https://doi.org/10.1023/B:MICI.0000032244.27022.f8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MICI.0000032244.27022.f8

Navigation