Skip to main content
Log in

Do we need radiochemical separation in activation analysis?

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The optimization of neutron activation analysis with regard to detection limit and uncertainty of measurement using physical and chemical means is reviewed. Using selected examples it is demonstrated that radiochemical separation is the most effective means of optimization, especially in neutron activation analysis, because it yields the lowest detection limits and uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. De soete, J. Gijbels, J. Hoste, Neutron Activation Analysis, Wiley-Interscience, London, New York, Sydney, Toronto, 1972.

    Google Scholar 

  2. T. L. Isenhour, G. H. Morrison, Anal. Chem., 36 (1964) 1089.

    Article  CAS  Google Scholar 

  3. M. Fedoroff, J. Radioanal. Chem., 15 (1973) 435.

    CAS  Google Scholar 

  4. L. Zikovski, J. Radioanal. Chem., 22 (1974) 165.

    Google Scholar 

  5. J. I. W. Watterson, J. Radioanal. Chem., 26 (1975) 135.

    CAS  Google Scholar 

  6. I. ObrusnÍk, K. Eckschlager, J. Radioanal. Nucl. Chem., 112 (1987) 233.

    Article  Google Scholar 

  7. N. M. Spyrou, J. Radioanal.Chem., 61 (1981) 211.

    CAS  Google Scholar 

  8. K. N. Desilva, A. Chatt, J. Trace Microprobe Tech., 1 (1983) 307.

    CAS  Google Scholar 

  9. A. Egan, J. Radioanal. Nucl. Chem., 110 (1987) 47.

    Article  CAS  Google Scholar 

  10. D. Brune, K. Jirlow, Nukleonik, 6 (1964) 242.

    CAS  Google Scholar 

  11. J. KuČera, Radiochem. Radioanal. Letters, 38 (1972) 229.

    Google Scholar 

  12. R. Zeisler, J. Radioanal. Nucl. Chem., 244 (2000) 507.

    Article  CAS  Google Scholar 

  13. M. Rossbach, R. Zeisler, J. R. W. Woititiez, Biol. Trace Element Res., 26/27 (1990) 63.

    Google Scholar 

  14. D. Wu, S. Landsberger, J. Radioanal. Nucl. Chem., 179 (1994) 155.

    Article  CAS  Google Scholar 

  15. S. Landsberger, S. Peshev, J. Radioanal. Nucl. Chem., 202 (1996) 201.

    Article  CAS  Google Scholar 

  16. S. Amiel, Nondestructive Activation Analysis, Elsevier, Amsterdam, Oxford, New York, 1981.

    Google Scholar 

  17. J. KuČera, R. Zeisler, Low-Level Determination of Silicon in Biological Materials Using Radiochemical Neutron Activation Analysis, Proc. 6 th Intern. Conf. on Methods and Applications of Radioanalytical Chemistry-MARC VI, Kailua-Kona, Hawaii, USA, April 7Œ11, 2003 (to be published in J. Radioanal. Nucl. Chem.).

    Google Scholar 

  18. F. Girardi, E. Sabbioni, J. Radioanal. Chem., 1 (1968) 169.

    CAS  Google Scholar 

  19. G. TÖrÖk, J. F. Diehl, Radiochim. Acta, 15 (1971) 96.

    Google Scholar 

  20. G. TÖrÖk, R. Schelenz, E. Fischer, J. F. Diehl, Z. Anal. Chem., 263 (1973) 110.

    Article  Google Scholar 

  21. P. O. Wester, D. Brune, K. Samsahl, Intern. J. Appl. Radiation Isotopes, 15 (1964) 59.

    Article  CAS  Google Scholar 

  22. G. H. Morrison, N. M. Potter, Anal. Chem., 44 (1972) 839.

    Article  CAS  Google Scholar 

  23. J. Schuhmacher, W. Maier-Borst, Kerntechnik, 14 (1972) 165.

    CAS  Google Scholar 

  24. J. A. Velandia, A. K. Perkons, J. Radioanal. Chem., 20 (1974) 473.

    CAS  Google Scholar 

  25. S. Landsberger, D. Wu, Biol. Trace Element Res., 71/72 (1999) 453.

    Google Scholar 

  26. J. KuČera, L. Soukal, J. Radioanal. Nucl. Chem., 168 (1993) 185.

    Article  Google Scholar 

  27. J. Ku<era, G. V. Iyengar, R. M. Parr, Z. Wanda, J. Radioanal. Nucl. Chem., 259 (2004) 505.

    Article  Google Scholar 

  28. S. Landsberger, S. Peshev, D. A. Becker, Nucl. Instr. Meth., A353 (1994) 601.

    Google Scholar 

  29. E. Sabbioni, J. KuČera, R. Pietra, O. Vesterberg, Sci. Total Environ., 188 (1996) 49.

    Article  CAS  Google Scholar 

  30. R. R. Greenberg, H. M. Kingston, R. Zeisler, J. Woittiez, Biol. Trace Element Res., 26/27 (1990) 17.

    Google Scholar 

  31. L. Moens, P. Verrept, R. Dams, J. Anal. Atom Spectr., 9 (1994) 1075.

    Article  CAS  Google Scholar 

  32. Y. Gelinas, G. V. Iyengar, R. M. Barnes, Fresenius J. Anal. Chem., 362 (1998) 483.

    Article  CAS  Google Scholar 

  33. V. HavrÁnek, J. KuČera, Z. Wanda, V. VoseČek, J. Radioanal. Nucl. Chem., 259 (2004) 325.

    Article  Google Scholar 

  34. R. Cornelis, J. Versieck, L. Mees, J. Hoste, F. Barbier, J. Radioanal. Chem., 55 (1980) 35.

    CAS  Google Scholar 

  35. J. KuČera, A. R. Byrne, A. MravcovÁ, J. LENER, Sci. Total Environ., 115 (1992) 191.

    Article  Google Scholar 

  36. A. R. Byrne, J. KuČera, Fresenius J. Anal. Chem., 340 (1991) 48.

    Article  CAS  Google Scholar 

  37. A. R. Byrne, J. Versieck, Biol. Trace Element Res., 26/27 (1990) 529.

    Article  Google Scholar 

  38. O. Ishida, K. Kihura, Y. Tsukamoto, F. Marumo, Clin. Chem., 35 (1989) 127.

    CAS  Google Scholar 

  39. A. R. Byrne, L. Benedik, Czech. J. Phys., 49, Suppl. S1, (1999) 263.

  40. A. R. Byrne, L. Benedik, Anal. Chem., 69 (1997) 996.

    Article  CAS  Google Scholar 

  41. J. J. M. De goeij, J. Radioanal. Nucl. Chem., 245 (2000) 5.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kučera, J., Zeisler, R. Do we need radiochemical separation in activation analysis?. Journal of Radioanalytical and Nuclear Chemistry 262, 255–260 (2004). https://doi.org/10.1023/B:JRNC.0000040883.15153.db

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JRNC.0000040883.15153.db

Keywords

Navigation