Skip to main content
Log in

Trace elements in higher fungi (mushrooms) determined by activation analysis

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The fruit bodies of wild-growing higher fungi (macromycetes), commonly called mushrooms, of various genera and species collected in localities with different geochemical features and man-made burden in the Czech Republic were analyzed by different modes of activation analysis. The elements Na, Mg, Al, S, Cl, K, Ti, V, Mn, Cu, Br, Ba and Dy were determined by short-term instrumental neutron activation analysis (INAA). Short-term epithermal INAA (ENAA) was used for determination of I and other elements, such as Rb, Ag, and U. The elements Na, K, Sc, Cr, Fe, Co, Cu, Zn, As, Se, Br, Rb, Ag, Cd, Sb, Cs, Ba, La, Ce, Sm, Eu, Hf, Au, Hg and Th were determined by long-term INAA, whereas long-term ENAA enabled determination of several other elements, such as Ni, Ta, W and U. The analytical possibilities of instrumental photon activation analysis (IPAA) using a microtron were also explored and found useful for determination of several additional elements, namely Sr, Y, Zr, Nb, and Pb. High concentrations of several essential and toxic trace elements found (up to hundreds of mg.g-1, dry mass) should be of concern in nutritional studies, because mushrooms form non-negligible part of diet in many countries, especially in Middle and East Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Stijve, R. Roschnik, Trav. Chim. Aliment. Hyg., 65 (1974) 209.

    Google Scholar 

  2. H. GrÜter, Z. Lebensm. Unters. Forsch., 134 (1967) 173.

    Google Scholar 

  3. H. GrÜter, Health Phys., 20 (1971) 655.

    Google Scholar 

  4. J. Wallace, L. Ch. Nayfield, Radiol. Health Data Rept., 11 (1970) 527.

    Google Scholar 

  5. J. KlÁÁn, Z. Řanda, J. Benada, J. Horyna, Česká Mykologie, 42 (1988) 158 (in Czech).

    Google Scholar 

  6. H. Mlodecki, W. Lasota, B. Pruska, Bromat. Chem. Toksykol., 6 (1973) 249 (in Polish).

    Google Scholar 

  7. Y. Solberg, Swampe, 8 (1983) 73.

    Google Scholar 

  8. T. Stijve, R. Besson, Chemosphere, 2 (1976) 151.

    Google Scholar 

  9. T. Stijve, Z. Lebensm. Unters.-Forsch., 164 (1977) 201.

    Google Scholar 

  10. J. P. Quinche, Schweiz. Landw. Forsch., 22 (1983) 137.

    Google Scholar 

  11. S. Piepponen, H. Liukkonen-Lilja, T. Kunsi, Z. Lebensm. Unters.-Forsch., 177 (1983) 257.

    Google Scholar 

  12. R. Seeger, M. Gross, Z. Lebensm. Unters.-Forsch., 173 (1981) 9.

    Google Scholar 

  13. T. Stijve, Z. Naturforsch., 39c (1984) 863.

    Google Scholar 

  14. E. Koch, H. Kneifel, E. Bayer, Z. Naturforsch., 42c (1987) 873.

    Google Scholar 

  15. J. Vetter, Acta Aliment., 28 (1999) 39.

    Google Scholar 

  16. F. Mutsch, O. Horak, H. Kinzel, Z. Pflanzenphysiol., 94 (1979) 1.

    Google Scholar 

  17. A. Demirbas, Food Chem., 68 (2000) 415.

    Google Scholar 

  18. E. Sesli, M. Tuzen, Food Chem., 65 (1999) 453.

    Google Scholar 

  19. D. M. Aruguete, J. H. Aldstadt, G. M. Mueller, Sci. Total Environ., 224 (1998) 43.

    Google Scholar 

  20. L. Svoboda, K. ZimmermannovÁ, P. KalaČ, Sci. Total Environ., 246 (2000) 61.

    Google Scholar 

  21. H. J. M. Bowen, Environmental Chemistry of the Elements, Academic Press, London, New York, Toronto, Sydney, San Francisco, 1979.

    Google Scholar 

  22. Ministry of Health of the Czech Republic, Regulation No. 298, 1997.

  23. The Commission of the European Communities, Commission regulation No. 466/2001.

  24. Z. Řanda, Neutron and Gamma Activation Analysis in Geochemistry and Cosmochemistry, DSc Thesis, Faculty of Natural Sciences of the Charles University, Kutna Hora and Prague, 1989 (in Czech).

    Google Scholar 

  25. A. V. Poddubny, N. K. Khristoforova, L. T. Kovekovdova, Mikologija i Fitopatologija, 32 (1998) 47.

    Google Scholar 

  26. M. Dermelj, V. Ravnik, L. Kosta, Radiochem. Radioanal. Letters, 24 (1976) 91.

    Google Scholar 

  27. A. R. Byrne, V. Ravnik, L. Kosta, Sci. Total Environ., 6 (1976) 65.

    Google Scholar 

  28. A. R. Byrne, M. Dermelj, T. Vakselj, Chemosphere, 8 (1979) 815.

    Google Scholar 

  29. Z. Řanda, M. VobeckÝ, J. KuncÍŘ, J. Benada, J. Radioanal. Chem., 46 (1978) 95.

    Google Scholar 

  30. Z. Řanda, J. KuncÍŘ, J. Benada, Radiochem. Radioanal. Letters, 21 (1975) 349.

    Google Scholar 

  31. J. KuncÍŘ, J. Benada, Z. Řanda, M. VobeckÝ, J. Radioanal. Chem., 5 (1970) 369.

    Google Scholar 

  32. Z. Řanda, Radiochem. Radioanal. Letters, 24 (1976) 157.

    Google Scholar 

  33. Z. Řanda, J. KuČera, L. Soukal, J. Radioanal. Nucl. Chem., 246 (2001) 149.

    Google Scholar 

  34. J. KuČera, P. Bode, V. ŠtĚpÁnek, J. Radioanal. Nucl. Chem., 245 (2000) 115.

    Google Scholar 

  35. Z. Řanda, J. KuČera, Proc. 14th Radiochemical Conference, Mariánské Lázně, Czech Republic, 14–19 April 2002.

  36. Z. Řanda, J. Radioanal. Nucl. Chem., 126 (1988) 351.

    Google Scholar 

  37. L. ŠiŠÁk, Mykologický Sbornik, 73 (1996) 98 (In Czech).

    Google Scholar 

  38. L. ŠiŠÁk, Mykologický Sbornik, 73 (1996) 132 (In Czech).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Řanda, Z., Kučera, J. Trace elements in higher fungi (mushrooms) determined by activation analysis. Journal of Radioanalytical and Nuclear Chemistry 259, 99–107 (2004). https://doi.org/10.1023/B:JRNC.0000015813.27926.32

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JRNC.0000015813.27926.32

Keywords

Navigation