Skip to main content
Log in

Cyclic, Linear, Cycloretro-Isomer, and Cycloretro-Inverso Peptides Derived from the C-Terminal Sequence of Bradykinin as Substrates or Inhibitors of Serine and Cysteine Proteases

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

We investigated the inhibition of trypsin, human tissue (hK1) and human plasma kallikrein (HuPK), papain, and cathepsin L, B, and X by synthetic cyclic, cycloretro-isomer, cycloretroinverso, and linear peptides derived from the C-terminal sequence of bradykinin. c(FSPFRG) and Ac-FSPFRG-NH2 were taken as the references for cyclic and linear peptides, respectively. Longer and more flexible analogs of them with addition of 2, 3, or 4 Gly and cycloretro-isomer and cycloretro-inverso analogs of c(FSPFRG) and c(GGGFSPFRG) were obtained and assayed. The susceptibility to hydrolysis of the peptides to all proteases was also examined. The highest affinities were found for c(FSPFRG) with hK1, Ac-GGFSPFRG-NH2 with HuPK, and ψ(NHCO) c(fspfrG) with cathepsin L. The Ki values for cathepsin B and X with cyclic peptides were lower than those of linear peptides. The serine proteases hydrolyzed all linear and cyclic peptides, except c(FSPFRG) and c(GFSPFRG). The cysteine proteases hydrolyzed only the linear peptides, which were poor substrates. Although the Ki values obtained in the current work were in the μM range, the cyclic and cycloretro-inverso peptides seem to be a promising approach to develop efficient and resistant to hydrolysis inhibitors for the kallikreins and lysosomal cysteine proteases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alves, L. C., Almeida, P. C., Franzoni, L., Juliano, L., and Juliano, M. A. (1996). J. Pept. Res. 9: 92-96.

    Google Scholar 

  • Alves, L. C., Judice, W. A., St Hilaire, P. M., Meldal, M., Sanderson, S. J., Mottram, J. C., et al. (2001). Mol. Biochem. Parasitol. 116: 1-9.

    Google Scholar 

  • Alves, M. F., Puzer, L., Cotrin, S. S., Juliano, M. A., Juliano, L., Bromme, D., et al. (2003). Biochem. J. 373: 981-986.

    Google Scholar 

  • Apostoluk, W., and Otlewski, J. (1998). Proteins: Structure, Function and Genetics 32: 459-474.

    Google Scholar 

  • Barlos, K., Gatos, D., Kutsogianni, S., Papaphotiou, G., Poulos, C., and Tsegenidis, T. (1991). Int. J. Pept. Protein Res. 38: 562-568.

    Google Scholar 

  • Barrett, A. J., and Kirshke, H. (1981). Methods Enzymol. 80: 771-778.

    Google Scholar 

  • Carmona, E., Dufour, E., Plouffe, C., Takebe, S., Mason, P., Mort, J. S., et al. (1996). Biochemistry 35: 8149-8157.

    Google Scholar 

  • Chase, J. T., and Shaw, E. (1970). Methods Enzymol. 19: 20-22.

    Google Scholar 

  • Cygler, M., and Mort, J. S. (1997). Biochimie 79: 645-652.

    Google Scholar 

  • Dias, C. L. F., and Rogana, E. (1986). Braz. J. Med. Biol. Res. 19: 11-18.

    Google Scholar 

  • Emim, J. A., Souccar, C., Castro, M. S., Godinho, R. O., Cezari, M. H., Juliano, L., et al. (2000). Br. J. Pharmacol. 130: 1099-1107.

    Google Scholar 

  • Fairlie, D. P., Tyndall, J. D., Reid, R. C., Wong, A. K., Abbenante, G., Scanlon, M. J., et al. (2000). J. Med. Chem. 43: 1271-1281.

    Google Scholar 

  • Fletcher, M. D., and Campbell, M. M. (1998). Chem. Rev. 98: 763-796.

    Google Scholar 

  • Guay, J., Falgueyret, J. P., Ducret, A., Percival, M. D., and Mancini, J. A. (2000). Eur. J. Biochem. 267: 6311-6318.

    Google Scholar 

  • Guncar, G., Klemencic, I., Turk, B., Turk, V., Karaoglanovic-Carmona, A., Juliano, L., et al. (2000). Structure Fold Des. 8: 305-313.

    Google Scholar 

  • Klemencic, I., Carmona, A. K., Cezari, M. H., Juliano, M. A., Juliano, L., Guncar, G., et al. (2000). Eur. J. Biochem. 267: 5404-5412.

    Google Scholar 

  • Laskowski, M., Jr., and Kato, I. (1980). Annu. Rev. Biochem. 49: 593-626.

    Google Scholar 

  • Lecaille, F., Kaleta, J., and Bromme, D. (2002). Chem. Rev. 102: 4459-4488.

    Google Scholar 

  • Leung, D., Abbenante, G., and Fairlie, D. P. (2000). J. Med. Chem. 43: 305-341.

    Google Scholar 

  • Marx, U. C., Korsinczky, M. L., Schirra, H. J., Jones, A., Condie, B., Otvos, L., Jr., et al. (2003). J. Biol. Chem. 278: 21782-21789.

    Google Scholar 

  • McBride, J. D., Freeman, N., Domingo, G. J., and Leatherbarrow, R. J. (1996). J. Mol. Biol. 259: 819-827.

    Google Scholar 

  • McBride, J. D., Watson, E. M., Brauer, A. B., Jaulent, A. M., and Leatherbarrow, R. J. (2002). Biopolymers 66: 79-92.

    Google Scholar 

  • Melo, R. L., Alves, L. C., Del Nery, E., Juliano, L., and Juliano, M. A. (2001). Anal. Biochem. 293: 71-77.

    Google Scholar 

  • Ménard, R., Khouri, H. E., Plouffe, C., Dupras, R., Rippoli, D., Vernet, T. Tessier, D. C., et al. (1990). Biochemistry 29: 6706-6713.

    Google Scholar 

  • Nägler, D. K., Storer, A. C., Portaro, F. C. V., Carmona, E., Juliano, L., and Ménard, R. (1997). Biochemistry 36: 12608-12615.

    Google Scholar 

  • Nägler, D. K., Tam, W., Storer, A. C., Krupa, J. C., Mort, J. S., and Menard, R. (1999a). Biochemistry 38: 4868-4874.

    Google Scholar 

  • Nägler, D. K., Zhang, R., Tam, W., Sulea, T., Purisima, E. O., and Ménard, R. (1999b). Biochemistry 38: 12648-12654.

    Google Scholar 

  • Nicklin, M. J., and Barrett, A. J. (1984). Biochem. J. 223: 245-253.

    Google Scholar 

  • Oliva, M. L., Grisolia, D., Sampaio, M. U., and Sampaio, C. A. M. (1982). Agents and Actions Suppl. 9: 52-57.

    Google Scholar 

  • Otlewski, J., Krowarsch, D., and Apostoluk, W. (1999). Acta Biochim. Pol. 46: 531-565.

    Google Scholar 

  • Portaro, F. C., Santos, A. B., Cezari, M. H., Juliano, M. A., Juliano, L., and Carmona, E. (2000). Biochem. J. 347: 123-129.

    Google Scholar 

  • Radisky, E. S., and Koshland, D. E., Jr. (2002). Proc. Natl. Acad Sci. U. S. A. 99: 10316-10321.

    Google Scholar 

  • Rowan, A. D., Mason, P., Mach, L., and Mort, J. S. (1992). J. Biol. Chem. 267: 15993-15999.

    Google Scholar 

  • Sampaio, C. A. M., Sampaio, M. U., and Prado, E. S. (1984). Hoppe Seyler's Z. Physiol. Chem. 365: 297-302.

    Google Scholar 

  • Sampson, M. T., and Kakkar, A. K. (2002). Biochem. Soc. Trans. 30: 201-207.

    Google Scholar 

  • Schechter, I., and Berger, A. (1967). Biochem. Biophys. Res. Comm. 27: 157-162.

    Google Scholar 

  • Shimamoto, K., Chao, J., and Margolius, H. S. (1980). J. Endocrinol. Metab. 51: 840-848.

    Google Scholar 

  • St Hilaire, P. M., Alves, L. C., Herrera, F., Renil, M., Sanderson, S. J., Mottram, J. C., et al. (2002). J. Med.Chem. 45: 1971-1982.

    Google Scholar 

  • Tyndall, J. D., and Fairlie, D. P. (2001). Curr. Med. Chem. 8: 893-907.

    Google Scholar 

  • Yan, S., Sameni, M., and Sloane, B. F. (1998). Biol. Chem. 379: 113-123.

    Google Scholar 

  • Yousef, G. M., and Diamandis, E. P. (2003). Thromb. Haemost. 90: 7-16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Aparecida Juliano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima, A.R., Juliano, L. & Juliano, M.A. Cyclic, Linear, Cycloretro-Isomer, and Cycloretro-Inverso Peptides Derived from the C-Terminal Sequence of Bradykinin as Substrates or Inhibitors of Serine and Cysteine Proteases. J Protein Chem 23, 287–294 (2004). https://doi.org/10.1023/B:JOPC.0000027853.93513.34

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOPC.0000027853.93513.34

Navigation