Skip to main content
Log in

Partial Purification and Characterization of Soluble Isoform of Butyrylcholinesterase from Rat Intestine

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Butyrylcholinesterase (BChE; E.C. 3.1.1.8.) was 260-fold purified from soluble fraction of rat intestine. The enzyme was composed of tetrameric globular form by nonreducing electrophoresis. Optimum pH value was determined as 7.2 after zero buffer extrapolation. Optimum temperature was examined as 37°C after zero time extrapolation. The enzyme showed marked substrate activation with positively charged, acyl-choline substrates. As a measure of catalytic efficiency, k cat/K m values were determined as 16,210, 25,650, and 46,150 for acetylthiocholine (ATCh), propionylthiocholine (PTCh), and butyrylthiocholine (BTCh), respectively. When the catalytic efficiencies are compared, soluble isoform of rat intestinal BChE became increasingly efficient as the size of the acyl portion of the substrate increases; BTCh > PTCh > ATCh. Differently, the enzyme showed substrate inhibition with benzoylcholine (BzCh) and a k cat/K m value of 21,190 was found. Triton X-100 inhibited more efficiently the rat intestinal BChE soluble isoform than it did the human serum BChE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bodur, E., Cokugras, A. N., and Tezcan, E. F. (2001). Arch. Biochem. Biophys. 386: 25–29.

    PubMed  Google Scholar 

  • Boeck, A. T., Schopfer, L. M., and Lockridge, O. (2002). Biochem. Pharmacol. 63: 2101–2110.

    PubMed  Google Scholar 

  • Bradford, M. M. (1976). Anal. Biochem. 72: 248–254.

    PubMed  Google Scholar 

  • Brown, S. S., Kalow, W., Whittaker, M., and Woronick, C. L. (1981). Adv. Clin. Chem. 22: 1–123.

    PubMed  Google Scholar 

  • Cokugras, A. N., and Tezcan, E. F. (1993). Int. J. Biochem. 25: 1115–1120.

    PubMed  Google Scholar 

  • Cokugras, A. N., and Tezcan, E. F. (1997). Gen. Pharmac. 29: 835–838.

    Google Scholar 

  • Dave, K. R., Syal, A. R., and Katyare, S. S. (2000). Z. Naturforsch. 55c: 100–108.

    Google Scholar 

  • Ellman, G. L., Courtney, K. D., Andres, V., and Featherstone, R. M. (1961). Biochem. Pharmacol. 7: 88–95.

    PubMed  Google Scholar 

  • Grunwald, J., Marcus, D., Papier, Y., Raveh, L., Pittel, Z., and Ashani, Y. (1997). J. Biochem. Biophys. Methods 34: 123–135.

    PubMed  Google Scholar 

  • Hoffman, R. S., Morasco, R., and Goldfrank, L. R. (1996). J. Toxicol-Clin. Toxic. 34: 259–266.

    Google Scholar 

  • Juul, P. (1968). Clin. Chim. Acta 19: 205–213.

    PubMed  Google Scholar 

  • Laemmli, U. K. (1970). Nature 227: 680–685.

    PubMed  Google Scholar 

  • Lockridge, O. (1990). Pharmac. Ther. 47: 35–60.

    Google Scholar 

  • Lockridge, O., Mottershaw-Jackson, N., Eckerson, H. W., and LaDu, B. N. (1996). J. Pharmac. Exp. 215: 1–8.

    Google Scholar 

  • Masson, P., Froment, M. T., Fortier, P. L., Visicchio, J. E., Bartels, C. F, Lockridge, O. (1998). Biochem. Biophys. Acta 1387: 41–52.

    PubMed  Google Scholar 

  • Masson, P., Xie, W., Froment, M-T., and Lockridge, O. (2001). Biochim. Biophys. Acta 1544: 166–176.

    PubMed  Google Scholar 

  • Masson, P., Schopfer, L. M., Bartels, C. F., Froment, M-T., Ribes, F., Nachon, F., et al. (2002). Biochim. Biophys. Acta 1594: 313–324.

    PubMed  Google Scholar 

  • Massoulie, J., Pezzementi, L., Bon, S., Krejci, E., and Vallette, F. M. (1992). Neurobiol. 41: 31–91.

    Google Scholar 

  • McPhalen, C. A., Strynadka, C. Y., and James, M. N. G. (1991). Adv. Prot. Chem. 42: 77–144.

    Google Scholar 

  • Raveh, L., Grunwald, J., Marcus, D., Papier, Y., Cohen, E., and Ashani, Y. (1993). Biochem. 45: 2465–2474.

    Google Scholar 

  • Raveh, L., Grauer, E., Grunwald, J., Cohen, E., and Ashani, Y. (1997). Toxicol. Appl. Pharmacol. 145: 43–53.

    PubMed  Google Scholar 

  • Sarkarati, B., Cokugras, A. N., and Tezcan, E. F. (1999). Comp. Biochem. Biophys. Part C 122: 181–190.

    Google Scholar 

  • Segel, I. H. (1975). Enzyme Kinetics, Wiley Interscience, Toronto, pp. 246–464.

    Google Scholar 

  • Sine, J-P., Toutant, J-P, Weigel, P., and Colas, B. (1992). Biochem. 31: 10893–10900.

    Google Scholar 

  • Sine, J-P. and Colas, B. (1996). Int. J. Biochem. Cell Biol. 28: 581–589.

    PubMed  Google Scholar 

  • Sun, H., Yazal, J. E., Lockridge, O., Schopfer, L. M., Brimijoin, S., and Pang, Y. P. (2001). J. Biol. Chem. 276: 9330–9336.

    PubMed  Google Scholar 

  • Tune, K. A., Levin, E., and Svesson, L-A. (1988). Biochem. Pharmacol. 37: 3867–3876.

    PubMed  Google Scholar 

  • Xie, W., Altamiro, C. V., Bartels, C. F., Speirs, R. J., Cashman, J. R., and Lockridge, O. (1999). Mol. Pharmacol. 55: 83–91.

    PubMed  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yıldız, Ö., Bodur, E., Çokugraş, A.N. et al. Partial Purification and Characterization of Soluble Isoform of Butyrylcholinesterase from Rat Intestine. J Protein Chem 23, 143–151 (2004). https://doi.org/10.1023/B:JOPC.0000020081.36183.b8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOPC.0000020081.36183.b8

Navigation