Skip to main content
Log in

Preparation and characterisation in simulated body conditions of glutaraldehyde crosslinked chitosan membranes

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Chitosan membranes, aimed at biomedical applications, were prepared by a solvent casting methodology. Crosslinking was previously performed in acetic acid solution with glutaraldehyde, in order to obtain different degrees of crosslinking. Some membranes were neutralised in a NaOH solution. Mechanical tensile tests comprised quasi-static experiments at constant stress rate and temperature sweep dynamic mechanical analysis tests. This included measurements with the samples immersed in isotonic saline solution at 37 °C, in order to simulate physiological conditions, that were performed using a specific liquid container. It was observed that for higher crosslinking levels the membranes become stiffer but their strength decreases; these results are in agreement with swelling tests, also performed at body temperature. All the membranes exhibited similar and significant damping properties in wet conditions, which were stable in a broad temperature range. Weight loss measurements showed that the developed membranes degrade slowly up to 60 days. Cytotoxicity screening, using cell culture tests, showed that eventually such materials could be adequate for use in biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. N. V. RAVI KUMAR, React. Funcz. Polym. 46 (2000) 1.

    Google Scholar 

  2. A. BEGIN and M.-R. V. CALSTEREN,Int. J. Biol. Macromol. 26 (1999) 63.

    Google Scholar 

  3. M. RINAUDO, G. PAVLOV and J. DESBRIERES, Polymer 40 (1999) 7029.

    Google Scholar 

  4. K. M. VARUM, M. M. MYHR, R. I. N. HJERDE and O. SMIDSROD, Carbohyd. Res. 299 (1997) 99.

    Google Scholar 

  5. K. M. YARUM, H. K. HOLME, M. IZUME, B. T. STOKKE and 0. SMIDSROD, Biochim. Biophys. Acta Gen. Subj. 1291 (1996) 5.

    Google Scholar 

  6. S. AIBA, Caibohyd. Res. 261 (1994) 297.

    Google Scholar 

  7. R. J. NORDTVEIT, K. M. VARUM and O. SMIDSROD, Carbohyd. Polym. 29 (1996) 163.

    Google Scholar 

  8. K. KURITA, Y. KAJI, T. MORI and Y. NISHIYAMA, ibid. 42 (2000) 19.

    Google Scholar 

  9. K. TOMIHATA and Y. IKADA, Biomaterials 18 (1997) 567.

    Google Scholar 

  10. K. KURITA, Prog. Polym. Sci. 26 (2001) 1921.

    Google Scholar 

  11. R. A. A. MUZZARELLI, Caibohyd. Polym. 20 (1993) 7.

    Google Scholar 

  12. S. SRIDHAR, G. SUSHEELA, G. J. REDDY and A. A. KHAN, Polym. Int. 50 (2001) 1156.

    Google Scholar 

  13. B. KRAJEWSKA, J. Chem. Technol. Biotechnol. 76 (2001) 636.

    Google Scholar 

  14. M. V. RISBUD and S. V. BHAT, J. Mater. Sci.: MaZer. Med. 12 (2001) 75.

    Google Scholar 

  15. D. A. MUSALE and A. KUMAR, Sep. Purf. Technol. 21 (2000) 27.

    Google Scholar 

  16. X. P. WANG, Y. F. FENG and Z. Q. SHEN,J. Appl. Polym. Sci . 75 (2000) 740.

    Google Scholar 

  17. J. GE, Y. CUI, Y. YAN and W. JIANG,J. Membr. Sci. 165 (2000) 75.

    Google Scholar 

  18. F.-L. MI, Y.-C. TAN, H.-C. LIANG, R.-N. HUANG and H.-W. SUNG, J. Biomater. Sci. Polymer Ed n 12 (2001) 835.

    Google Scholar 

  19. F.-L. MI, H.-W. SUNG and S.-S. SHYU, J. Polym. Sci. Pol. Chem. 38 (2000) 2804.

    Google Scholar 

  20. F. LI, W. G. LIU and K. D. YAO, Biomaterials 23 (2002) 343.

    Google Scholar 

  21. O. A. C. MONTEIRO Jr. and C. AIROLDI, Int. J. Biol. Macromol. 26 (1999) 119.

    Google Scholar 

  22. S. C. MENDES, R. L. REIS, Y. P. BOVELL, A. M. CUNHA, C. A. VAN BLITTERSWIJK and J. D. DE BRUIJN, Biomaterials 22 (2001) 2057.

    Google Scholar 

  23. A. P. MARQUES, R. L. REIS and J. A. HUNT, ibid. 23 (2002) 1471.

    Google Scholar 

  24. M. E. GOMES, R. L. REIS, A. M. CUNHA, C. A. VAN BLITTERWIJK and J. D. DE BRUIJN, ibid. 22 (2001) 1911.

    Google Scholar 

  25. A. J. SALGAD0, M. E. GOMES, A. CHOU, O. P. COUTINHO, R. L. REIS and D. W. HUTCHMACHER, Mater. Sci. Eng. C 20 (2002) 27.

    Google Scholar 

  26. T. MOSMANN, J. Immunol Meth. 65 (1983) 55.

    Google Scholar 

  27. T. F. SLATER, B. SAWYER and U. STRAULI, Biochim. Biophys. Acta. 77 (1963) 383.

    Google Scholar 

  28. P. K. SMITH, Anal. Biochem. 150 (1985) 76.

    Google Scholar 

  29. R. L. REIS, S. C. MENDES, A. M. CUNHA and M. BEVIS, Polym. Int. 43 (1997) 347.

    Google Scholar 

  30. N. D. WINBLADE, H. SCHMOKEL, M. BAUMANN, A. S. HOFFMAN and J. A. HUBBELL, J. Biomed. Mater. Res. 59 (2002) 618.

    Google Scholar 

  31. K. T. HWANG, J. T. KIM, S. T. JUNG, G. S. CHO and H. J. PARK, J. Appl. Polym. Sci. 89 (2003) 3476.

    Google Scholar 

  32. K. TUZLAKOĞLU, C. M. ALVES, J. F. MANO and R. L. REIS, Macromol. Biosci, accepted.

  33. C. A. SCOTCHFORD, M. G. CASCONE, S. DOWNES and P. GIUSTI, Biomaterials 19 (1998) 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, R.M., Silva, G.A., Coutinho, O.P. et al. Preparation and characterisation in simulated body conditions of glutaraldehyde crosslinked chitosan membranes. Journal of Materials Science: Materials in Medicine 15, 1105–1112 (2004). https://doi.org/10.1023/B:JMSM.0000046392.44911.46

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSM.0000046392.44911.46

Keywords

Navigation