Skip to main content
Log in

Alkali Metal Complexation. Binding Properties of cone and partial-cone Calix[4]arenes Bearing a Mixed (O 2 , O 2 ') Donor Set (O = Phosphine Oxide; O ' = Amide or Ester)

  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

Abstract

The stability constants of alkali metal complexes obtained from the followingO-substituted calix[4]arenes were determined by UV/Vis spectroscopy inmethanol at 20°C: 5,11,17,23-tetra-tert-butyl-25,27-bis(diethylcarbamoylmethoxy)-26,28-bis(diphenylphosphinoylmethoxy)calix[4]arene(cone-1), 25,27-syn-26,28-anti-5,11,17,23-tetra-tert-butyl-25,27-bis(diethylcarbamoylmethoxy)-26,28-bis(diphenylphosphinoylmethoxy)calix[4]arene (paco-1),5,11,17,23-tetra-tert-butyl-25,27-diethoxycarbonylmethoxy-26,28-bis(diphenylphosphinoylmethoxy)calix[4]arene(cone-2) and25,27-syn-26,28-anti-5,11,17,23-tetra-tert-butyl-25,27-diethoxycarbonylmethoxy-26,28-bis(diphenylphosphinoylmethoxy)calix[4]arene(paco-2). All ligands form 1:1 complexes with alkali metal cations. The amide-containing calixarenes were found to be more efficient for alkali metalcomplexation than those bearing ester substituents. While sodium ions are selectivelycomplexed by the two mixed amide-(phosphine oxide) calixarenes, the twoester-containing isomers cone-2 and paco-2 turned out to be selective towards potassium and rubidium ions, respectively. With allfour ligands the lowest stability constants were found for the lithium andcesium ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Montavon, G. Duplatre, N. Barakat, M. Burgard, Z. Asfari, and J. Vicens: J. Incl. Phenom. 27, 155 (1997).

    Google Scholar 

  2. M.R. Yaftian, M. Burgard, C. Wieser, C.B. Dieleman, and D. Matt: Solvent Extr. Ion Exch. 16, 1131 (1998).

    Google Scholar 

  3. F. Arnaud-Neu, S, Fanni, L. Guerra, W. McGregor, K. Ziat, M.-J. Schwing-Weill, G. Barrett, M.A. McKervey, D. Marrs, and E.M. Seward: J. Chem. Soc., Perkin Trans. 2 113 (1995).

  4. M.R. Yaftian, M. Burgard, D. Matt, C. Wieser, and C. Dieleman: J. Incl. Phenom. 27, 127 (1997).

    Google Scholar 

  5. M.R. Yaftian, M. Burgard, C.B. Dieleman, and D. Matt: J. Membr. Sci. 144, 57 (1998).

    Google Scholar 

  6. C. Wieser, D. Matt, L. Toupet, H. Bourgeois, and J.-P. Kintzinger: J. Chem. Soc., Dalton Trans. 4041 (1996).

  7. J.M. Harrowfield, M. Mocerino, B.J. Peachey, B.W. Skelton, and A.H. White: J. Chem. Soc., Dalton Trans. 1687 (1996).

  8. P. Schmitt, P.D. Beer, M.G.B. Drew, and P.D. Sheen: Angew. Chem. Int. Ed. Engl. 36, 1840 (1997).

    Google Scholar 

  9. Z. Asfari, C. Naumann, J. Vicens, M. Nierlich, P. Thuery, C. Bressot, V. Lamare, and J.-F. Dozol: New J. Chem. 20, 1183 (1996).

    Google Scholar 

  10. A. Arduini, E. Ghidini, A. Pochini, R. Ungaro, G.D. Andreetti, G. Calestani, and F. Ugozzoli: J. Incl. Phenom. 6, 119 (1988).

    Google Scholar 

  11. A. Ikada, T. Tsudera, and S. Shinkai: J. Org. Chem. 62, 3569 (1997).

    Google Scholar 

  12. F. Arnaud-Neu, J.K. Browne, D. Byrne, D.J. Marrs, M.A. McKervey, P. O'Hagan, M. J. Schwing-Weill, and A. Walker: Chem. Eur. J. 5, 175 (1999).

    Google Scholar 

  13. M. Baaden, G. Wipff, M.R. Yaftian, M. Burgard, and D. Matt: J. Chem. Soc., Perkin Trans. 2 1315 (2000).

  14. F. Arnaud-Neu, M.-J. Schwing-Weill, K. Ziat, S. Cremin, S.J. Harris, and M.A. McKervey: New J. Chem. 15, 33 (1991).

    Google Scholar 

  15. F. Arnaud-Neu, G. Barrett, S. Fanni, D. Marrs, W. McGregor, M.A. McKervey, M.-J. Schwing-Weill, V. Vetrogon, and S. Wechsler: J. Chem. Soc., Perkin Trans 2 453 (1995).

  16. A. Arduini, A. Pochini, S. Reverberi, R. Ungaro, G. D. Andreetti, and F. Ugozzoli: Tetrahedron 42, 2089 (1986).

    Google Scholar 

  17. F. Arnaud-Neu, E.M. Collins, M. Deasy, G. Ferguson, S.J. Harris, B. Kaitner, A.J. Lough, M.A. McKervey, E. Marques, B.L. Ruhl, M.-J. Schwing-Weill, and E.M. Seward: J. Am. Chem. Soc. 111, 8681 (1989).

    Google Scholar 

  18. K. Iwamoto and S. Shinkai: J. Org. Chem. 57, 7066 (1992).

    Google Scholar 

  19. C. Wieser-Jeunesse, D. Matt, M.R. Yaftian, M. Burgard, and J.M. Harrowfield: C. R. Acad. Sci. Paris Sér. II 479 (1998).

  20. M. Burgard, M.R. Yaftian, I. Bagatin, and D. Matt: J. Incl. Phenom. 38, 413 (2000).

    Google Scholar 

  21. C. Loeber, D. Matt, A. De Cian, and J. Fischer: J. Organomet. Chem. 475, 297 (1994).

    Google Scholar 

  22. C. Loeber, C. Wieser, D. Matt, A. De Cian, J. Fischer, and L. Toupet: Bull. Soc. Chim. Fr. 132, 166 (1995).

    Google Scholar 

  23. V.A. Nicely and J.D. Dye: J. Chem. Educ. 48, 443 (1971).

    Google Scholar 

  24. V.I. Kalchenko, M.A. Visotsky, A.N. Shivanyuk, V.V. Pirozhenko, and L.N. Markovsky: Phosphorus, Sulfur and Silicon 109-110, 573 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yaftian, M., Vahedpour, M., Abdollahi, H. et al. Alkali Metal Complexation. Binding Properties of cone and partial-cone Calix[4]arenes Bearing a Mixed (O 2 , O 2 ') Donor Set (O = Phosphine Oxide; O ' = Amide or Ester). Journal of Inclusion Phenomena 47, 129–132 (2003). https://doi.org/10.1023/B:JIPH.0000011782.54437.11

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JIPH.0000011782.54437.11

Navigation