Skip to main content
Log in

Plasma GLP-2 Levels and Intestinal Markers in the Juvenile Pig During Intestinal Adaptation: Effects of Different Diet Regimens

  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Adaptation of the residual small bowel following resection is dependent on luminal and humoral factors. We aimed to establish if circulating levels of glucagon-like peptide (GLP-2) change under different dietary regimens following resection and to determine if there is a relationship between plasma GLP-2 levels and markers of intestinal adaptation. Four-week-old piglets underwent a 75% proximal small bowel resection (n=31) or transection (n=14). Postoperatively they received either pig chow (n=14), nonpolymeric (elemental) infant formula (n=7), or polymeric infant formula alone (n=8) or supplemented either with fiber (n=6) or with bovine colostrum protein concentrate (CPC; n=10) for 8 weeks until sacrifice. Plasma GLP-2 levels were measured at weeks 0, 2, 4, and 8 postoperatively. In addition, end-stage parameters were studied at week 8 including weight gain, ileal villus height, crypt depth, and disaccharidase levels. Plasma GLP-2 levels were higher in resected animals compared to transected animals fed the same diet. Plasma GLP-2 levels were significantly increased in the colostrum protein isolate-supplemented animals following resection compared to all other diet groups. The increase in plasma GLP-2 (pM) was greatest in the first 2 weeks postresection (week 0, 15.5; week 2, 30.9), followed by a plateau at weeks 2 to 4 and a decrease in GLP-2 levels from week 4 to week 8. At week 8, no relationships were found between the plasma GLP-2 levels and the measurements of weight gain, villus height, lactase, sucrase, maltase, crypt depth, or villus/crypt ratio. Plasma GLP-2 levels increase in the first weeks following massive small intestinal resection. The increase in plasma GLP-2 levels was enhanced by supplementation of the diet with CPC. The changes in GLP-2 levels observed in this study may suggest that GLP-2 plays a role in the adaptive response in the intestine following resection in this preclinical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Vanderhoof JA, Langas AN: Short bowel syndrome in children and infants. Gastroenterology 113:1767-1778, 1997

    PubMed  Google Scholar 

  2. Ziegler MM: Short bowel syndrome: Remedial features that influence outcome and the duration of parenteral nutrition. J Pediatr 131:335-336, 1997

    PubMed  Google Scholar 

  3. Vanderhoof JA: Short bowel syndrome in children and small bowel transplantation. Pediatr Clin North Am 43:533-550, 1996

    PubMed  Google Scholar 

  4. Lipman TO: Home artificial nutrition. Curr Opin Clin Nutr Met Care 2:387-393, 1999

    Article  Google Scholar 

  5. Vanderhoof JA: Short bowel syndrome and intestinal adaptation. In Pediatric Gastrointestinal Disease, 3rd ed. WA Walker, PR Durie, JR Hamilton, et al. (eds). Ontario, BC Decker, 2000, pp 583-602

    Google Scholar 

  6. Thompson JS: Can the intestine adapt to a changing environment? Gastroenterology 113:1402-1412, 1997

    PubMed  Google Scholar 

  7. Wolvekamp MCJ, Heineman E, Taylor RG, Fuller PJ: Towards understanding the process of intestinal adaptation. Dig Dis 14:59-72, 1996

    PubMed  Google Scholar 

  8. Taylor RG, Fuller PJ: Humoral factors in intestinal adaptation. In The Gut as an Endocrine Organ. Balliere's Clin Endocrinol Metab 8:165-184, 1994

    Google Scholar 

  9. Scott RB, Kirk D, MacNaughton WK, Meddings JB: GLP-2 augments the adaptive response to massive small bowel resection in rat. Am J Physiol 275:G911-G921, 1988

    Google Scholar 

  10. Drucker DJ, DeForest L, Brubaker PL: Intestinal response to growth factors administered alone or in combination with human [Gly2] glucagon-like peptide 2. Am J Physiol 273:G1252-G1262, 1997

    PubMed  Google Scholar 

  11. Tsai CH, Hill M, Asa SL, Brubaker PL, Drucker DJ: Intestinal growth-promoting properties of glucagon-like peptide-2 in mice. Am J Physiol 273:E77-E84, 1997

    PubMed  Google Scholar 

  12. Brubaker PL, Crivici A, Izzo A, Ehrlich P, Tsai CH, Drucker DJ: Circulating and tissue forms of the intestinal growth factor, glucagonlike peptide-2. Endocrinology 138:4837-4834, 1997

    Article  PubMed  Google Scholar 

  13. Munroe DG, Cupta AK, Kooshesh F, Vyas TB, Rizkalla G, Wang H, Demchyshyn L, Yang ZJ, Kamboy RK, Chgen H, McCallum K, Sumner-Smith M, Drucker DJ, Crivici A: Prototypic G proteincoupled receptor for the intestinotropic factor glucagon-like peptide 2. Proc Natl Acad Sci USA 96:1569-1577, 1999

    Article  PubMed  Google Scholar 

  14. Drucker DJ: Glucagon-like peptide 2. TEM 10:153-156, 1999

    PubMed  Google Scholar 

  15. Xiao Q, Boushey RP, Cino M, Drucker DJ, Brubaker PL: Circulating levels of glucagon-like peptide-2 in human subjects with inflammatory bowel disease. Am J Physiol 278(4):R1057-R1063, 2000

    Google Scholar 

  16. Jeppesen PB, Hartmann B, Hansen BS, Thulesen J, Holst JJ, Mortensen PB: Impaired meal stimulated glucagon-like peptide 2 response in ileal resected short bowel patients with intestinal failure. Gut 45(4):559-563, 1999

    PubMed  Google Scholar 

  17. Dunphy J, Fuller PJ: "Enteroglucagon," bowel growth and GLP-2. Mol Cell Endocrinol 132:7-11, 1997

    Article  PubMed  Google Scholar 

  18. Baksheev L, Fuller PJ: Hormonal control in intestinal adaptation. Trends Endocrinol Metab 11:401-405, 2000

    Article  PubMed  Google Scholar 

  19. Benjamin MA, Mc Kay DM, Yang P-C, Cameron H, Perdue MH: Glucagon-like peptide-2 enhances intestinal epithelial barrier function of both transcellular and paracellular pathways in the mouse. Gut 47(1):112-119, 2000

    Article  PubMed  Google Scholar 

  20. Cheeseman CI, O'Neill D: Bacterial D-glucoase transport activity along the crypt-villus axis in rat jejunum and upregulation induced by gastric inhibitory peptide and glucagon-like peptide-2. Exp Physiol 83(5):605-616, 1998

    PubMed  Google Scholar 

  21. Dunphy Jl, Justice FA, Taylor RG, Fuller PJ: MRNAlevels of dipeptidyl transferase peptidase IV decrease during intestinal adaptation. J Surg Res 87:130-133, 1999

    Article  PubMed  Google Scholar 

  22. Xiao Q, Boushey RP, Drucker DJ, Brubaker PL: Secretion of the intestinotrophic hormone glucagon-like peptide 2 is differentially regulated by nutrients in humans. Gastroenterology 117(1):99-105, 1999

    PubMed  Google Scholar 

  23. Hartmann B, Thulesen J, Kissow H, Thulesen S, Orskov C, Ropke C, Poulsen SS, Holst JJ: Dipeptidyl peptidase IV (DPP-IV) inhibition enhances the intestinotrophic effect of glucagon-like peptide-2 in rats and mice. Endocrinology 141:4013-4020, 2000

    Article  PubMed  Google Scholar 

  24. Alavi K, Yu D, Schwartz MZ: Glucagon-like peptide-2 enhances intestinal function following massive small bowel resection. Gastroenterology 114(4):G4717, 1998

    Google Scholar 

  25. Ljungmann K, Hartmann B, Kissmeyer-Nielsen P, Flyvbjerg A, Holst JJ, Laurberg S: Time-dependent intestinal adaptation and GLP-2 alterations after small bowel resection in rats. Am J Physiol-Gastrointest Liver Physiol 281(3):G779-G785, 2001

    PubMed  Google Scholar 

  26. Bines J, Taylor RG, Justice FA, Paris MCJ, Sourial M, Nagy E, Emselle S, Catto-Smith AG, Fuller PJ: The influence of diet complexity on intestinal adaptation following massive small bowel resection in a preclinical model. J Gastro Hepatol 17:1170-1179, 2002

    Article  Google Scholar 

  27. Hartmann B, Johnsen AH, Ørskov C, Adelhorst K, Thim L, Holst JJ: Structure, measurement and secretion of human glucagon-like peptide-2. Peptides 21:73-80, 2000

    Article  PubMed  Google Scholar 

  28. Barnes GL, Ford RPK, Dawson S, Lawrance S: "Normal" disaccharidase levels in children. Austr Pediatr J 24:31-33, 1988

    Google Scholar 

  29. Verbeke G, Molenberghs G: Linear Mixed Models for Longitudinal Data. New York, Springer Verlag, 2000, pp 55-76

    Google Scholar 

  30. Williamson RCN: Intestinal adaptation. Structural, functional and cytokinetic changes. N Engl J Med 298:1393-1402, 1978

    PubMed  Google Scholar 

  31. Weser E, Heller R, Tawil T: Stimulation of mucosal growth in the rat ileum by bile and pancreatic secretions after jejunal resection. Gastroenterology 73:524-529, 1977

    PubMed  Google Scholar 

  32. Wolvekamp MCJ, Durante NMC, Heineman E, Meijssen MAC, Bijman J, de Jonge HR, Marquet RL, Molenaar JC: The value of in vivo electrophysiological measurements in the follow-up of intestinal adaptation after massive small bowel resection in the rat. Gut 34:637-642, 1993

    PubMed  Google Scholar 

  33. Bury KD: Carbohydrate digestion and absorption after massive resection of the small intestine. Surg Gynecol Obstet 135:177-187, 1972

    PubMed  Google Scholar 

  34. Justice FA, Wolvekamp MCJ, Taylor RG, Fuller PJ: Response of genes for prostaglandin synthesis and apoptosis to massive small bowel resection. Int J Surg Invest 3(2):135-140, 2001

    Google Scholar 

  35. Taylor RG, Verity K, Fuller PJ: Rat ileal glucagon gene expression: Ontogeny and response to massive small bowel resection. Gastroenterology 99:724-729, 1990

    PubMed  Google Scholar 

  36. Taylor RG, Beveridge DJ, Nakamura T, Fuller PJ: Hepatocyte growth factor gene expression after massive small bowel resection: Lack of stimulation in lung and liver. Exp Clin Endocrinol 103:58-62, 1995

    Google Scholar 

  37. Rountree DB, Ulshen MH, Selub S, Fuller CR, Bloom SR, Ghatei MA, Lund PK: Nutrient-independent increases in proglucagon and ornithine decarboxylase messenger RNAs after jejunal resection. Gastroenterology 103:462-468, 1992

    PubMed  Google Scholar 

  38. Karali TT: Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Deposit 16:351-380, 1995

    Google Scholar 

  39. Miller ER, Ullrey DE: The pig as a model for human nutrition. Annu Rev Nutr 7:361-382, 1987

    Article  PubMed  Google Scholar 

  40. Moughan PJ, Rowan AM: The pig as a model for human nutrition research. Proc Nutr Soc NZ 14:116-123, 1989

    Google Scholar 

  41. Thulesen J, Hartmann B, Kissow H, Jeppesen PB, Orskov C, Holst JJ, Poulsen SS: Intestinal growth adaptation and glucagonlike peptide 2 in rats with ileal-jejunal transposition or small bowel resection. Dig Dis Sci 46(2):379-388, 2001

    Article  PubMed  Google Scholar 

  42. Burrin DG, Stoll B, Jiang R, Petersen Y, Elnif J, Buddington RK, Schmidt M, Holst JJ, Hartmann B, Sangild PT: GLP-2 stimulates intestinal growth in premature TPN-fed pigs by suppressing proteolysis and apoptosis. Am J Physiol Gastrointest Liver Physiol 279(6):G1249-G1256, 2000

    PubMed  Google Scholar 

  43. Dahly EM, Gillingham MB, Guo Z, Murali SG, Nelson DW, Holst JJ, Ney DM: Role of luminal nutrients and endogenous GLP-2 in intestinal adaptation to mid-small bowel resection. AmJ Physiol Gastr Liver Physiol 284(4):G670-G682, 2003

    Google Scholar 

  44. L'Hereux, Brubaker PL: Therapeutic potential of the intestinotrophic hormone, glucagon-like peptide-2. AnnMed 33(4):229-235, 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paris, M.C., Fuller, P.J., Carstensen, B. et al. Plasma GLP-2 Levels and Intestinal Markers in the Juvenile Pig During Intestinal Adaptation: Effects of Different Diet Regimens. Dig Dis Sci 49, 1688–1695 (2004). https://doi.org/10.1023/B:DDAS.0000043388.52260.2f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:DDAS.0000043388.52260.2f

Navigation