Skip to main content
Log in

Enhanced Biodegradation of Casablanca Crude Oil by A Microbial Consortium in Presence of a Rhamnolipid Produced by Pseudomonas Aeruginosa AT10

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The biodegradation of oil products in the environment is often limited by their low water solubility and dissolution rate. Rhamnolipids produced by Pseudomonas aeruginosa AT10 were investigated for their potential to enhance bioavailability and hence the biodegradation of crude oil by a microbial consortium in liquid medium. The characterization of the rhamnolipids produced by strain AT10 showed the effectiveness of emulsification of complex mixtures. The addition of rhamnolipids accelerates the biodegradation of total petroleum hydrocarbons from 32% to 61% at 10 days of incubation. Nevertheless, the enhancement of biosurfactant addition was more noticeable in the case of the group of isoprenoids from the aliphatic fraction and the alkylated polycyclic aromatic hydrocarbons (PHAS) from the aromatic fraction. The biodegradation of some targeted isoprenoids increased from 16% to 70% and for some alkylated PAHs from 9% to 44%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abalos A, Deroncelé V, Espuny J, Bermúdez R & Manresa A (2000) Surface active rhamnolipids accumulation by Pseudomonasaeruginosa AT10 from a vegetal oil refinery wastes. Revista Cubana de Química. XII, 24-29

    Google Scholar 

  • Abalos A, Pinazo A, Infante R, Casals M, García F & Manresa A (2001) Physico chemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17: 1367- 1371

    Google Scholar 

  • Aceves M, Grimalt J, Albaigès J, Broto F, Comellas L & Grassiot M (1988) Analysis of hydrocarbons in aquatic sediments. II. Evaluation of common preparative procedures for petroleum and chlorinated hydrocarbons. J. Chromatogr. 436: 503-509

    Google Scholar 

  • Adamson A & Gast A (1997) Emulsions. Foams and aerosols. In: Physical Chemistry of Surfaces (pp 500-528). Wiley and Sons, New York

    Google Scholar 

  • Alexander M (1999) Biodegradation and bioremediation, 2nd edn. Academic Press, San Diego, CA

    Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zang J, Zang Z, Miller W & Lipman DL (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res. 25: 3389-3402

    Google Scholar 

  • Atwood D & Florence, AT (1983) Phase behaviour of surfactants. In: Surfactant Systems, Their Chemistry, Pharmacy and Biology (pp 40-70). Chapman & Hall, London

    Google Scholar 

  • Barkay T, Navon-Venezia S, Ron EZ & Rosenberg E (1999) Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan. Appl. Environ. Microbiol. 65: 2697-2702

    Google Scholar 

  • Britton LN (1984) Microbial degradation of aliphatic hydrocarbons. In: Gibson DT (Ed) Microbial Degradation of Organic Compounds (pp 89-129). Marcel Dekker, New York

    Google Scholar 

  • Casellas M, Fernandez P, Bayona JM & Solanas AM (1995) Bioassay-directed chemical analysis of genotoxic components in urban airborne particulate matter from Barcelona (Spain). Chemosphere 30: 725-740

    Google Scholar 

  • Casellas M, Grifoll M, Sabaté J & Solanas AM (1998) Isolation and characterization of a 9-fluorenoned-degrading bacterial strain and its role in synergistic degradation of fluorene by a consortium. Can. J. Microbiol. 44: 734-742

    Google Scholar 

  • Chandrasekaran EV & Bemiller JN (1980) Constituent analysis of glycosaminoglycans. In: Wrhiste L and Wolfrom ML (Eds) Methods in Carbohydrate Chemistry (pp 89-97). Academic Press, New York

    Google Scholar 

  • Clayton JR, Payne JR & Farlow JS (1992) Oil Spill Dispersants: Mechanisms of Action and Laboratory Tests. CRC Press Inc., Boca Raton, FA

    Google Scholar 

  • Desai JD & Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. 61: 47-64

    Google Scholar 

  • Déziel E, Lépine F, Dennie D, Boismenu D, Mamer O & Villemur R (1999) Liquid chromatography/mass spectrometry analysis of mixture of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene Biophys Biochim. Acta 1440: 244-252

    Google Scholar 

  • Fernandez P, Grifoll M, Solanas AM, Bayona JM & Albaigés J (1992) Bioassay-directed chemical analysis of genotoxic components in coastal marine sediments. Environ. Sci. Technol. 26: 817-829

    Google Scholar 

  • Florence AT & Atwood D. (1998) Emulsions. In: Physico-Chemical Principles of Pharmacy (pp 252-307) Palgrave, New York.

    Google Scholar 

  • Foght JM, Gutnick DL & Westlake DWS (1989) Effect of emulsan on biodegradation of crude oil by pure and mixed cultures. Appl. Environ. Microbiol. 55: 36-42.

    Google Scholar 

  • Griest WH, Tomkins BA, Epler JL & Rao TK (1979) Characterization of multialkylated polycyclic aromatic hydrocarbons in energy-related materials. In: Jones PW and Leber P (Eds) Carcinogenesis, Vol. 4 (pp 395-409). Raven-Press, New York

    Google Scholar 

  • Haba E, Abalos A, Jáuregui O, Espuny MJ & Manresa A (2003) Use of liquid-chromatography-mass spectroscopy for studying the composition and properties of rhamnolipids produced by different strains of Pseudomonas aeruginosa. J. Sur. Det. 6: 155-161

    Google Scholar 

  • International Association of Research Chemists (1983) IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans. Polynuclear aromatic compounds. Part. 1. Int. Assoc. Res. Chem. Monogr. 32: 355- 364

    Google Scholar 

  • Kanga SA, Bonner JS, Page CA, Mills MA & Autenrieth RL (1997) Solubilization of naphthalene and methyl-substituted naphthalenes from crude oil using biosurfactants. Environ. Sci Technol 31: 556-561

    Google Scholar 

  • LaVoie EJ, Bedenko V, Hirota N, Hecht SS & Hoffmann D (1979) A comparison of the mutagenicity, tumor initiating activity and complete carcinogenicity of polynuclear aromatic hydrocarbons. In: Jones PW and Leber P (Eds) Carcinogenesis, Vol. 4 (pp 705-721). Raven Press, New York

    Google Scholar 

  • Linos A, Reichelt R, Keller U & Steinbuchel A (2000) A gramnegative bacterium, identified as Pseudomonas aeruginosa AL98, is a potent degrader of natural rubber and synthetic cis-1,4-polyisoprene. FEMS Microbiol. Lett. 182: 155- 161

    Google Scholar 

  • Maidak BL, Cole JR, Lilburn TG, Parker Jr CT, Saxman PR, Stredwick JM, Garrity GM, Olsen GJ, Pramanik S, Schmidt TM & Tiedje JM (2000) The RDP (Ribosomal Database Project) continues. Nucleic Acids Res. 28: 173-174

    Google Scholar 

  • Morgan P & Watkinson RJ (1994) Biodegradation of compounds of petroleum. In: Ratledge C (Ed) Biochemistry of Microbial Degradation. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Pearson WR & Lipman DJ (1988) Improved tools for biological sequence analysis, Proc. Natl. Acad. Sci. USA 85: 2444- 2448

    Google Scholar 

  • Reiling HE, Thanei-wyss U, Guerra-Santos LH, Hirt R, Käppeli O & Fiechter A (1986) Pilot plant production of rhamnolipid biosurfactant by Pseudomonas aeruginosa. Appl. Environ. Microbiol. 51: 985-989

    Google Scholar 

  • Ron EZ & Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr. Opin. Biotechnol. 13: 249-252

    Google Scholar 

  • Sekelsky AM & Shreve GS (1999) Kinetic model of biosurfactant-enhanced hexadecane biodegradation by Pseudomonasaeruginosa. Biotechnol. Bioeng. 63: 402-409

    Google Scholar 

  • Speight JG (1991) The Chemistry and Technology of Petroleum. John Wiley & Sons, New York

    Google Scholar 

  • Solanas AM, Parés R, Bayona JM & J Albaigès J (1984) Degradation of aromatic petroleum hydrocarbons by pure microbial cultures. Chemosphere 13: 593-601

    Google Scholar 

  • Sugiura K, Ishihara M & Shimauchi T (1997) Physicochemical properties and biodegradability of crude oil. Environ. Sci. Technol. 31: 45-51

    Google Scholar 

  • Van Dyke MI, Couture P, Brauer M, Lee H & Trevors TJ (1993) Pseudomonas aeruginosa UG2 rhamnolipid biosurfactant: structural characterization and their use in removing hydrophobic compounds from soil. Can. J. Microbiol. 39: 1071-1078

    Google Scholar 

  • Verschueren K (1997) Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York

    Google Scholar 

  • Viñas M, Grifoll M, Sabaté J & Solanas AM (2002) Biodegradation of a crude oil by three microbial consortia of different origins and metabolic capabilities. J. Ind. Microbiol. Biotechnol. 28: 252-260

    Google Scholar 

  • Wilson K (1987) Preparation of genomic DNA from bacteria. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K. (Eds) Current Protocols in Molecular Biology (pp. 2.4.1-2.4.2). John Wiley, New York

    Google Scholar 

  • Willumsen PA, Karlson U & Pritchard PH (1998) Response of fluoranthene-degrading bacteria to surfactants. Appl. Microbiol. Biotechnol. 50: 475-483

    Google Scholar 

  • Zhang YM & Miller RM (1992) Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (Biosurfactant). Appl. Environ. Microbiol. 60: 2101-2106

    Google Scholar 

  • Zhang YM & Miller RM (1994) Effect of a Pseudomonasrhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl. Environ. Microbiol. 60: 2101-2106

    Google Scholar 

  • Zhang YM, Maier WJ & Miller RM (1997) Effect of rhamnolipids on the dissolution, bioavailability and biodegradation of phenanthrene. Environ. Sci. Technol. 31(8): 2211-2217

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abalos, A., Viñas, M., Sabaté, J. et al. Enhanced Biodegradation of Casablanca Crude Oil by A Microbial Consortium in Presence of a Rhamnolipid Produced by Pseudomonas Aeruginosa AT10. Biodegradation 15, 249–260 (2004). https://doi.org/10.1023/B:BIOD.0000042915.28757.fb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIOD.0000042915.28757.fb

Navigation