Skip to main content
Log in

Ranking the role of RANK ligand in apoptosis

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Many members of tumor necrosis factor (TNF) superfamily are characterized by their ability to induce apoptosis once they bind in a homotrimeric manner to their cognate receptors. The receptor activator of nuclear factor-κB ligand (RANKL), a member of the TNF superfamily identified seven years ago, was originally described as a factor that induced osteoclastogenesis and dendritic cell survival. Recent observations indicate that a growth inhibitory and apoptosis-inducing activity is associated with RANKL, as is the case for other members of TNF superfamily. This review describes the possible mechanisms of induction of RANKL-induced growth inhibition/apoptosis and discusses the role of various components in RANKL-signaling in this phenomenon, including TNF receptor-associated factor (TRAF)-6, nuclear factor-κB (NF-κB), c-jun N-terminal kinase JNK), phosphatidylinositol-3 kinase (PI3K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wong BR, Josien R, Lee SY, et al. TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J Exp Med 1997; 186: 2075–2080.

    Google Scholar 

  2. Anderson DM, Maraskovsky E, Billingsley WL, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 1997; 390: 175–179.

    Google Scholar 

  3. Yasuda H, Shima N, Nakagawa N, et al. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): A mechanism by which OPG/OCIF inhibits osteo-clastogenesis in vitro. Endocrinology 1998; 139: 1329–1337.

    Google Scholar 

  4. Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998; 93: 165–176.

    Google Scholar 

  5. Wong BR, Rho J, Arron J, et al. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J Biol Chem 1997; 272: 25190–25194.

    Google Scholar 

  6. Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 1998; 95: 3597–3602.

    Google Scholar 

  7. Lum L, Wong BR, Josien R, et al. Evidence for a role of a tumor necrosis factor-alpha (TNF-alpha)-converting enzyme-like protease in shedding of TRANCE, a TNF family member involved in osteoclastogenesis and dendritic cell survival. J Biol Chem 1999; 274: 13613–13618.

    Google Scholar 

  8. Fuller K, Wong B, Fox S, Choi Y, Chambers TJ. TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts. J Exp Med 1998; 188: 997–1001.

    Google Scholar 

  9. Bharti AC, Takada Y, Shishodia S, Aggarwal BB. Evidence that receptor activator of nuclear factor (NF)-kappaB ligand can suppress cell proliferation and induce apoptosis through activation of a NF-kappaB-independent and TRAF6-dependent mechanism. J Biol Chem 2004; 279: 6065–6076.

    Google Scholar 

  10. Hsu H, Lacey DL, Dunstan CR, et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sd USA 1999; 96: 3540–3545.

    Google Scholar 

  11. Fiumara P, Snell V, Li Y, et al. Functional expression of receptor activator of nuclear factor kappaB in Hodgkin disease cell lines. Blood 2001; 98: 2784–2790.

    Google Scholar 

  12. Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell 1997; 89: 309–319.

    Google Scholar 

  13. Banner DW, D'Arcy A, Janes W, et al. Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: Implications for TNFreceptor activation. Cell 1993; 73: 431–445.

    Google Scholar 

  14. Darnay BG, Haridas V, Ni J, Moore PA, Aggarwal BB. Characterization of the intracellular domain of receptor activator of NF-kappaB (RANK). Interaction with tumor necrosis factor receptor-associated factors and activation of NF-kappab and c-Jun N-terminal kinase. J Biol Chem 1998; 273: 20551–20555.

    Google Scholar 

  15. Wong BR, Besser D, Kim N, et al. TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol Cell 1999; 4: 1041–1049.

    Google Scholar 

  16. Darnay BG, Aggarwal BB. Signal transduction by TNF and TNF-related ligands and their receptors. Ann of Rheum Dis 1999; 58: S0–S11.

    Google Scholar 

  17. Aggarwal BB, Shishodia S, Ashikawa K, Bharti AC. The role of TNF and its family members in inflammation and cancer: Lessons from gene deletion. Curr Drug Targets Inflamm Allergy 2002; 1: 327–341.

    Google Scholar 

  18. Dadgostar H, Cheng G. Membrane localization of TRAP 3 enables JNK activation. J Biol Chem 2000; 275: 2539–2544.

    Google Scholar 

  19. McWhirter SM, Pullen SS, Holton JM, Crute JJ, Kehry MR, Alber T. Crystallographic analysis of CD40 recognition and signaling by human TRAF2. Proc Natl Acad Sci USA 1999; 96: 8408–8413.

    Google Scholar 

  20. Xu Y, Cheng G, Baltimore D. Targeted disruption of TRAF3 leads to postnatal lethality and defective T-dependent immune responses. Immunity 1996; 5: 407–415.

    Google Scholar 

  21. Pullen SS, Dang TT, Crute JJ, Kehry MR. CD40 signaling through tumor necrosis factor receptor-associated factors (TRAFs). Binding site specificity and activation of down-stream pathways by distinct TRAFs. J Biol Chem 1999; 274: 14246–14254.

    Google Scholar 

  22. Darnay BG, Ni J, Moore PA, Aggarwal BB. Activation of NF-kappaB by RANK requires tumor necrosis factor receptor-associated factor (TRAP) 6 and NF-kappaB-inducing kinase. Identification of a novel TRAF6 interaction motif. J Biol Chem 1999; 274: 7724–7731.

    Google Scholar 

  23. Baud V, Liu ZG, Bennett B, Suzuki N, Xia Y, Karin M. Signaling by proinflammatory cytokines: Oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain. Genes Deo 1999; 13: 1297–1308.

    Google Scholar 

  24. Yeh WC, Shahinian A, Speiser D, et al. Early lethality, functional NF-kappaB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity 1997; 7: 715–725.

    Google Scholar 

  25. Matsumoto M, Sudo T, Saito T, Osada H, Tsujimoto M. Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-kappa B ligand (RANKL). J Biol Chem 2000; 275: 31155–31161.

    Google Scholar 

  26. Kobayashi N, Kadono Y, Naito A, et al. Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. Embo J 2001; 20: 1271–1280.

    Google Scholar 

  27. Mizukami J, Takaesu G, Akatsuka H, et al. Receptor activator of NF-kappaB ligand (RANKL) activates TAKl mitogen-activated protein kinase kinase kinase through a signaling complex containing RANK, TAB2, and TRAF6. Mol Cell Biol 2002; 22: 992–1000.

    Google Scholar 

  28. Yang WC, Collette Y, Nunes JA, Olive D. Tec kinases: A family with multiple roles in immunity. Immunity 2000; 12: 373–382.

    Google Scholar 

  29. Soriano P, Montgomery C, Geske R, Bradley A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 1991; 64: 693–702.

    Google Scholar 

  30. Schwartzberg PL, Xing L, Hoffmann O, et al. Rescue of osteoclast function by transgenic expression of kinase-deficient Src in src −/− mutant mice. Genes Deo 1997; 11: 2835–2844.

    Google Scholar 

  31. Lomaga MA, Yeh WC, Sarosi I, et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 1999; 13: 1015–1024.

    Google Scholar 

  32. Dougall WC, Glaccum M, Charrier K, et al. RANK is essential for osteoclast and lymph node development. Genes Dev 1999; 13: 2412–2424.

    Google Scholar 

  33. Kong YY, Yoshida H, Sarosi I, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999; 397: 315–323.

    Google Scholar 

  34. Takayanagi H, Kim S, Koga T, et al. Induction and activation of the transcription factor NFATcl (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 2002; 3: 889–901.

    Google Scholar 

  35. Komarova SV, Pilkington MF, Weidema AF, Dixon SJ, Sims SM. RANK ligand-induced elevation of cytosolic Ca2+ accelerates nuclear translocation of nuclear factor kappa B in osteoclasts. J Biol Chem 2003; 278: 8286–8293.

    Google Scholar 

  36. Hirotani H, Tuohy NA, Woo JT, Stern PH, Clipstone NA. The calcineurin/NFAT signaling pathway regulates osteoclastogenesis in RAW264.7 cells. J Biol Chem 2004.

  37. Wang C, Steer JH, Joyce DA, Yip KH, Zheng MH, Xu J. 12-O-tetradecanoylphorbol-13-acetate (TPA) inhibits osteoclastogenesis by suppressing RANKL-induced NF-kappaB activation. J Bone Miner Res 2003; 18: 2159–2168.

    Google Scholar 

  38. Cyert MS. Regulation of Nuclear Localization during Signaling. Biol.Chem. 2001; 276: 20805–20808.

    Google Scholar 

  39. Ishida N, Hayashi K, Hoshijima M, et al. Large Scale Gene Expression Analysis of Osteoclastogenesis in Vitro and Elu-cidation of NFAT2 as a Key Regulator. J.Biol.Chem. 2002; 277: 41147–41156.

    Google Scholar 

  40. Ishida N, Hayashi K, Hoshijima M, et al. Large scale gene expression analysis of Osteoclastogenesis in vitro and elucidation of NFAT2 as a key regulator. J Biol Chem 2002; 277: 41147–41156.

    Google Scholar 

  41. Kim HJ, Yoon MJ, Lee J, Penninger JM, Kong YY. Osteoprotegerin ligand induces beta-casein gene expression through the transcription factor CCAAT/enhancer-binding protein beta. J Biol Chem 2002; 277: 5339–5344.

    Google Scholar 

  42. Kawaida R, Ohtsuka T, Okutsu J, et al. Jun dimerization protein 2 (JDP2), a member of the AP-1 family of transcription factor, mediates osteoclast differentiation induced by RANKL. J Exp Med 2003; 197: 1029–1035.

    Google Scholar 

  43. Kawaguchi N, Noda M. Mitf is expressed in osteoclast progenitors in vitro. Exp Cell Res 2000; 260: 284–291.

    Google Scholar 

  44. Mansky KC, Sankar U, Han J, Ostrowski MC. Microphthalmia transcription factor is a target of the p38 MAPK pathway in response to receptor activator of NF-kappa B ligand signaling. J Biol Chem 2002; 277: 11077–11083.

    Google Scholar 

  45. Franzoso G, Carlson L, Xing L, et al. Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev 1997; 11: 3482–3496.

    Google Scholar 

  46. lotsova V, Caamano J, Loy J, Yang Y, Lewin A, Bravo R. Osteopetrosis in mice lacking NF-κBl and NF-kappaB2. Nat Med 1997; 3: 1285–1289.

    Google Scholar 

  47. Tagaya H, Kunisada T, Yamazaki H, et al. Intramedullary and extramedullary B lymphopoiesis in osteopetrotic mice. Blood 2000; 95: 3363–3370.

    Google Scholar 

  48. Shiotani A, Takami M, Itoh K, Shibasaki Y, Sasaki T. Regulation of osteoclast differentiation and function by receptor activator of NFkB ligand and osteoprotegerin. Anat Rec 2002; 268: 137–146.

    Google Scholar 

  49. Glantschnig H, Fisher JE, Wesolowski G, Rodan GA, Reszka AA. M-CSF, TNFalpha and RANKligand promote osteoclast survival by signaling through mTOR/S6 kinase. Cell Death Differ 2003; 10: 1165–1177.

    Google Scholar 

  50. Hofbauer LC, Dunstan CR, Spelsberg TC, Riggs BL, Khosla S. Osteoprotegerin production by human osteoblast lineage cells is stimulated by vitamin D, bone morphogenetic protein-2, and cytokines. Biochem Biophys Res Commun 1998; 250: 776–781.

    Google Scholar 

  51. Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Boyle WJ, Riggs BL. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res 2000; 15: 2–12.

    Google Scholar 

  52. Horwood NJ, Elliott J, Martin TJ, Gillespie MT. Osteotropic agents regulate the expression of osteoclast differentiation factor and osteoprotegerin in osteoblastic stromal cells. Endocrinology 1998; 139: 4743–4746.

    Google Scholar 

  53. Yasuda H, Shima N, Nakagawa N, et al. A novel molecular mechanism modulating osteoclast differentiation and function. Bone 1999; 25: 109–113.

    Google Scholar 

  54. Abu-Amer Y, Ross FP, Edwards J, Teitelbaum SL. Lipopolysaccharide-stimulated osteoclastogenesis is mediated by tumor necrosis factor via its P55 receptor. J Clin Invest 1997; 100: 1557–1565.

    Google Scholar 

  55. Abu-Amer Y, Erdmann J, Alexopoulou L, Kollias G, Ross FP, Teitelbaum SL. Tumor necrosis factor receptors types 1 and 2 differentially regulate osteoclastogenesis. J Biol Chem 2000; 275: 27307–27310.

    Google Scholar 

  56. Azuma Y, Kaji K, Katogi R, Takeshita S, Kudo A. Tumor necrosis factor-alpha induces differentiation of and bone resorption by osteoclasts. J Biol Chem 2000; 275: 4858–4864.

    Google Scholar 

  57. Chiang CY, Kyritsis G, Graves DT, Amar S. Interleukin-1 and tumor necrosis factor activities partially account for calvarial bone resorption induced by local injection of lipopolysaccharide. Infect Immun 1999; 67: 4231–4236.

    Google Scholar 

  58. Park YC, Ye H, Hsia C, et al. A novel mechanism of TRAP signaling revealed by structural and functional analyses of the TRADD-TRAF2 interaction. Cell 2000; 101: 777–787.

    Google Scholar 

  59. Kobayashi K, Takahashi N, Jimi E, et al. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med 2000; 191: 275–286.

    Google Scholar 

  60. Bharti AC, Takada Y, Aggarwal BB. Curcumin (diferuloyl-methane) inhibits receptor activator of NF-kappaB ligand-induced NF-kappaB activation in osteoclast precursors and suppresses osteoclastogenesis. J Immunol 2004; 172: 5940–5947.

    Google Scholar 

  61. Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 1999; 18: 6853–6866.

    Google Scholar 

  62. Xing L, Venegas AM, Chen A, et al. Genetic evidence for a role for Src family kinases in TNF family receptor signaling and cell survival. Genes Deo 2001; 15: 241–253.

    Google Scholar 

  63. Gingery A, Bradley E, Shaw A, Oursler MJ. Phosphatidylinositol 3-kinase coordinately activates the MEK/ERK and AKT/NFkappaB pathways to maintain osteoclast survival. J Cell Biochem 2003; 89: 165–179.

    Google Scholar 

  64. Kim HH, Shin HS, Kwak HJ, et al. RANKL regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/ Akt signal transduction pathway. Faseb J 2003; 17: 2163–2165.

    Google Scholar 

  65. Miyamoto T, Ohneda O, Arai F, et al. Bifurcation of osteoclasts and dendritic cells from common progenitors. Blood 2001; 98: 2544–2554.

    Google Scholar 

  66. Williamson E, Bilsborough JM, Viney JL. Regulation of mucosal dendritic cell function by receptor activator of NF-kappa B (RANK)/RANK ligand interactions: Impact on tolerance induction. J Immunol 2002; 169: 3606–3612.

    Google Scholar 

  67. Wong BR, Josien R, Lee SY, Vologodskaia M, Steinman RM, Choi Y. The TRAP family of signal transducers mediates NF-kappaB activation by the TRANCE receptor. J Biol Chem 1998; 273: 28355–28359.

    Google Scholar 

  68. Yu Q, Gu JX, Kovacs C, Freedman J, Thomas EK, Ostrowski MA. Cooperation of TNF family members CD40 ligand, receptor activator of NF-kappa B ligand, and TNF-alpha in the activation of dendritic cells and the expansion of viral specific CD8 T cell memory responses in HIV-1-infected and HIV-1-uninfected individuals. J Immunol 2003; 170: 1797–1805.

    Google Scholar 

  69. Breuil V, Schmid-Antomarchi H, Schmid-Alliana A, Rezzonico R, Euller-Ziegler L, Rossi B. The receptor activator of nuclear factor (NF)-kappaB ligand (RANKL) is a new chemotactic factor for human monocytes. Faseb J 2003; 17: 1751–1753.

    Google Scholar 

  70. Henriksen K, Karsdal M, Delaisse JM, Engsig MT. RANKL and vascular endothelial growth factor (VEGF) induce osteoclast chemotaxis through an ERKl/2-dependent mechanism. J Biol Chem 2003; 278: 48745–48753.

    Google Scholar 

  71. Woo KM, Kim HM, Ko JS. Macrophage colony-stimulating factor promotes the survival of osteoclast precursors by up-regulating Bcl-X(L). Exp Mol Med 2002; 34: 340–346.

    Google Scholar 

  72. Muller I, Pfister SM, Grohs U, et al. Receptor activator of nuclear factor kappaB ligand plays a nonredundant role in doxorubicin-induced apoptosis. Cancer Res 2003; 63: 1772–1775.

    Google Scholar 

  73. Roundy K, Smith R, Weis JJ, Weis JH. Overexpression of RANKL implicates IFN-beta-mediated elimination of B-cell precursors in the osteopetrotic bone of microphthalmic mice. J Bone Miner Res 2003; 18: 278–288.

    Google Scholar 

  74. Josien R, Wong BR, Li HL, Steinman RM, Choi Y. TRANCE, a TNF family member, is differentially expressed on T cell subsets and induces cytokine production in dendritic cells. J Immunol 1999; 162: 2562–2568.

    Google Scholar 

  75. Fata JE, Kong YY, Li J, et al. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 2000; 103: 41–50.

    Google Scholar 

  76. Li J, Sarosi I, Yan XQ, et al. RANKis the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci USA 2000; 97: 1566–1571.

    Google Scholar 

  77. Ishida T, Mizushima S, Azuma S, et al. Identification of TRAF6, a novel tumor necrosis factor receptor-associated factor protein that mediates signaling from an amino-terminal domain of the CD40 cytoplasmic region. J Biol Chem 1996; 271: 28745–28748.

    Google Scholar 

  78. Cao Z, Xiong J, Takeuchi M, Kurama T, Goeddel DV. TRAF6 is a signal transducer for interleukin-1. Nature 1996; 383: 443–446.

    Google Scholar 

  79. Naito A, Azuma S, Tanaka S, et al. Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 1999; 4: 353–362.

    Google Scholar 

  80. Xia XZ, Treanor J, Senaldi G, et al. TACI is a TRAF-interacting receptor for TALL-1, a tumor necrosis factor family member involved in B cell regulation. J Exp Med 2000; 192: 137–143.

    Google Scholar 

  81. Shu HB, Johnson H. B cell maturation protein is a receptor for the tumor necrosis factor family member TALL-1. Proc Natl Acad Sd USA 2000; 97: 9156–9161.

    Google Scholar 

  82. Naito A, Yoshida H, Nishioka E, et al. TRAF6-deficient mice display hypohidrotic ectodermal dysplasia. Proc Natl Acad Sci USA 2002; 99: 8766–8771.

    Google Scholar 

  83. Sinha SK, Zachariah S, Quinones HI, Shindo M, Chaudhary PM. Role of TRAF3 and-6 in the activation of the NF-kappa B and JNK pathways by X-linked ectodermal dysplasia receptor. J Biol Chem 2002; 277: 44953–44961.

    Google Scholar 

  84. Kojima T, Morikawa Y, Copeland NG, et al. TROY, a newly identified member of the tumor necrosis factor receptor superfamily, exhibits a homology with Edar and is expressed in embryonic skin and hair follicles. J Biol Chem 2000; 275: 20742–20747.

    Google Scholar 

  85. Norimatsu M, Ono T, Aoki A, et al. Lipopolysaccharide-induced apoptosis in swine lymphocytes in vivo. Infect Immun 1995; 63: 1122–1126.

    Google Scholar 

  86. Bergman MC, Attrep JF, Grammer AC, Lipsky PE. Ligation of CD40 influences the function of human Ig-secreting B cell hybridomas both positively and negatively. J Immunol 1996; 156: 3118–31132.

    Google Scholar 

  87. Dunger A, Augstein P, Schmidt S, Fischer U. Identification of interleukin 1-induced apoptosis in rat islets using in situ specific labelling of fragmented DNA. J Autoimmun 1996; 9: 309–313.

    Google Scholar 

  88. Seshasayee D, Valdez P, Van M, Dixit VM, Tumas D, Grewal IS. Loss of TACI causes fatal lymphoproliferation and autoimmunity, establishing TACI as an inhibitory BLyS receptor. Immunity 2003; 18: 279–288.

    Google Scholar 

  89. Lomaga MA, Henderson JT, Elia AJ, et al. Tumor necrosis factor receptor-associated factor 6 (TRAF6) deficiency results in exencephaly and is required for apoptosis within the developing CNS. J Neurosd 2000; 20: 7384–7393.

    Google Scholar 

  90. Datta SR, Brunet A, Greenberg ME. Cellular survival: A play in three Akts. Genes Deo 1999; 13: 2905–2927.

    Google Scholar 

  91. Chan TO, Rittenhouse SE, Tsichlis PN. AKT/PKB and other D3 phosphoinositide-regulated kinases: Kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem 1999; 68: 965–1014.

    Google Scholar 

  92. Scheid MP, Woodgett JR. PKB /AKT: Functional insights from genetic models. Nat Rev Mol Cell Biol 2001; 2: 760–768.

    Google Scholar 

  93. Testa JR, Bellacosa A. AKT plays a central role in tumorigenesis. Proc Natl Acad Sci USA 2001; 98: 10983–10985.

    Google Scholar 

  94. Fuller K, Bayley KE, Chambers TJ. Activin A is an essential cofactor for osteoclast induction. Biochem Biophys Res Commun 2000; 268: 2–7.

    Google Scholar 

  95. Sugatani T, Alvarez UM, Hruska KA. Activin A stimulates IkappaB-alpha/NFkappaB and rank expression for osteoclast differentiation, but not AKT survival pathway in osteoclast precursors. J Cell Biochem 2003; 90: 59–67.

    Google Scholar 

  96. Sugatani T, Alvarez U, Hruska KA. PTENregulates RANKL-and osteopontin-stimulated signal transduction during osteoclast differentiation and cell motility. J Biol Chem 2003; 278: 5001–5008.

    Google Scholar 

  97. Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes Dev 2001; 15: 807–826.

    Google Scholar 

  98. Bao H, Jacobs-Helber SM, Lawson AE, Penta K, Wickrema A, Sawyer ST. Protein kinase B (c-Akt), phosphatidylinositol 3-kinase, and STAT5 are activated by erythropoietin (EPO) in HCD57 erythroid cells but are constitutively active in an EPO-independent, apoptosis-resistant subclone (HCD57-SREI cells). Blood 1999; 93: 3757–3773.

    Google Scholar 

  99. Hinton HJ, Welham MJ. Cytokine-induced protein kinase B activation and Bad phosphorylation do not correlate with cell survival of hemopoietic cells. J Immunol 1999; 162: 7002–7009.

    Google Scholar 

  100. Morice WG, Brunn GJ, Wiederrecht G, Siekierka JJ, Abraham RT. Rapamycininduced inhibition of p34cdc2 kinase activation is associated with Gl/S-phase growth arrest in T lymphocytes. J Biol Chem 1993; 268: 3734–3738.

    Google Scholar 

  101. Okahashi N, Murase Y, Koseki T, Sato T, Yamato K, Nishihara T. Osteoclast differentiation is associated with transient upregulation of cyclin-dependent kinase inhibitors p21(WAFl/CIPl) and p27(KIPl). J Cell Biochem 2001; 80: 339–345.

    Google Scholar 

  102. Dormond O, Lejeune FJ, Ruegg C. Modulation of cdk2, cyclin Dl, p16INK4a, p21WAF and p27Kipl expression in endothelial cells by TNF/IFN gamma. Anticancer Res 2002; 22: 3159–3163.

    Google Scholar 

  103. Lunemann JD, Waiczies S, Ehrlich S, et al. Death ligand TRAIL induces no apoptosis but inhibits activation of human (auto)antigen-specific T cells. J Immunol 2002; 168: 4881–4888.

    Google Scholar 

  104. N'Cho M, Brahmi Z. Evidence that Fas-induced apoptosis leads to S phase arrest. Hum Immunol 2001; 62: 310–319.

    Google Scholar 

  105. Cardone MH, Roy N, Stennicke HR, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998; 282: 1318–1321.

    Google Scholar 

  106. Rao A. NFATp, a cyclosporin-sensitive transcription factor implicated in cytokine gene induction. J Leukoc Biol 1995; 57: 536–542.

    Google Scholar 

  107. Yang X, Khosravi-Far R, Chang HY, Baltimore D. Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell 1997; 89: 1067–1076.

    Google Scholar 

  108. Verheij M, Bose R, Lin XH, et al. Requirement for ceramideinitiated SAPK/JNK signalling in stress-induced apoptosis. Nature 1996; 380: 75–79.

    Google Scholar 

  109. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposing effects of ERK and JNK-p38 MAPkinases on apoptosis. Science 1995; 270: 1326–1331.

    Google Scholar 

  110. Goillot E, Raingeaud J, Ranger A, et al. Mitogen-activated protein kinase-mediated Fas apoptotic signaling pathway. Proc Natl Acad Sci USA 1997; 94: 3302–3307.

    Google Scholar 

  111. Deng Y, Ren X, Yang L, Lin Y, Wu X. A JNK-dependent pathway is required for TNFalpha-induced apoptosis. Cell 2003; 115: 61–70.

    Google Scholar 

  112. Le-Niculescu H, Bonfoco E, Kasuya Y, Claret FX, Green DR, Karin M. Withdrawal of survival factors results in activation of the JNK pathway in neuronal cells leading to Fas lig-and induction and cell death. Mol Cell Biol 1999; 19: 751–763.

    Google Scholar 

  113. Herr I, Wilhelm D, Meyer E, Jeremias I, Angel P, Debatin KM. JNK/SAPK activity contributes to TRAIL-induced apoptosis. Cell Death Differ 1999; 6: 130–135.

    Google Scholar 

  114. Vivo C, Liu W, Broaddus VC. c-Jun N-terminal kinase contributes to apoptotic synergy induced by tumor necrosis factor-related apoptosis-inducing ligand plus DNA damage in chemoresistant, p53 inactive mesothelioma cells. J Biol Chem 2003; 278: 25461–25467.

    Google Scholar 

  115. Koo MS, Kwo YG, Park JH, Choi WJ, Billiar TR, Kim YM. Signaling and function of caspase and c-jun N-terminal kinase in cisplatin-induced apoptosis. Mol Cells 2002; 13: 194–201.

    Google Scholar 

  116. Sawai H, Okazaki T, Yamamoto H, et al. Requirement of AP-1 for ceramide-induced apoptosis in human leukemia HL-60 cells. J Biol Chem 1995; 270: 27326–27331.

    Google Scholar 

  117. Behrens A, Sibilia M, Wagner EF. Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat Genet 1999; 21: 326–329.

    Google Scholar 

  118. Whitfield J, Neame SJ, Paquet L, Bernard O, Ham J. Dominant-negative c-Jun promotes neuronal survival by reducing BIM expression and inhibiting mitochondrial cytochrome c release. Neuron 2001; 29: 629–43.

    Google Scholar 

  119. Maundrell K, Antonsson B, Magnenat E, et al. Bcl-2 undergoes phosphorylation by c-Jun N-terminal kinase/stress-activated protein kinases in the presence of the constitutively active GTP-binding protein Racl. J Biol Chem 1997; 272: 25238–25242.

    Google Scholar 

  120. Kharbanda S, Saxena S, Yoshida K, et al. Translocation of SAPK/JNK to mitochondria and interaction with Bcl-x(L) in response to DNA damage. J Biol Chem 2000; 275: 322–327.

    Google Scholar 

  121. Fuchs SY, Adler V, Pincus MR, Ronai Z. MEKK1/JNK signaling stabilizes and activates p53. Proc Natl Acad Sd USA 1998; 95: 10541–10546.

    Google Scholar 

  122. Chen YR, Tan TH. The c-Jun N-terminal kinase pathway and apoptotic signaling (review). Int J Oncol 2000; 16: 651–162.

    Google Scholar 

  123. Harkin DP, Bean JM, Miklos D, et al. Induction of GADD45 and JNK/SAPK-dependent apoptosis following inducible expression of BRCA1. Cell 1999; 97: 575–586.

    Google Scholar 

  124. Matsui K, Fine A, Zhu B, Marshak-Rothstein A, Ju ST. Identification of two NF-kappa B sites in mouse CD95 ligand (Fas ligand) promoter: Functional analysis in T cell hybridoma. J Immunol 1998; 161: 3469–3473.

    Google Scholar 

  125. Harwood FG, Kasibhatla S, Petak I, Vernes R, Green DR, Houghton JA. Regulation of FasL by NF-kappaB and AP-1 in Fas-dependent thymineless death of human colon carcinoma cells. J Biol Chem 2000; 275: 10023–10029.

    Google Scholar 

  126. Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS, Jr. NF-kappaB antiapoptosis: Induction of TRAF1 and TRAF2 and c-IAPl and c-IAP2 to suppress caspase-8 activation. Science 1998; 281: 1680–1683.

    Google Scholar 

  127. Dudley E, Hornung F, Zheng L, Scherer D, Ballard D, Lenardo M. NF-kappaB regulates Fas/APO-l/CD95-and TCR-mediated apoptosis of T lymphocytes. EurJ Immunol 1999; 29: 878–886.

    Google Scholar 

  128. Lawrence T, Gilroy DW, Colville-Nash PR, Willoughby DA. Possible new role for NF-kappaB in the resolution of inflammation. Nat Med 2001; 7: 1291–1297.

    Google Scholar 

  129. Sugarman BJ, Aggarwal BB, Hass PE, Figari IS, Palladino MA, Jr., Shepard HM. Recombinant human tumor necrosis factor-alpha: Effects on proliferation of normal and trans-formed cells in vitro. Science 1985; 230: 943–945.

    Google Scholar 

  130. Nagata S. Fas ligand-induced apoptosis. Annu Rev Genet 1999; 33: 29–55.

    Google Scholar 

  131. Ashkenazi A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2002; 2: 420–430.

    Google Scholar 

  132. Qin ZH, Chen RW, Wang Y, Nakai M, Chuang DM, Chase TN. Nuclear factor kappaB nuclear translocation upregulates c-Myc and p53 expression during NMDA receptor-mediated apoptosis in rat striatum. J Neurosci 1999; 19: 4023–4033.

    Google Scholar 

  133. Ryan KM, Ernst MK, Rice NR, Vousden KH. Role of NF-kappaB in p53-mediated programmed cell death. Nature 2000; 404: 892–897.

    Google Scholar 

  134. Lee H, Arsura M, Wu M, Duyao M, Buckler AJ, Sonenshein GE. Role of Rel-related factors in control of c-myc gene transcription in receptor-mediated apoptosis of the murine B cell WEHI231 line. J Exp Med 1995; 181: 1169–1177.

    Google Scholar 

  135. Kasibhatla S, Brunner T, Genestier L, Echeverri F, Mahboubi A, Green DR. DNA damaging agents induce expression of Fas ligand and subsequent apoptosis in T lymphocytes via the activation of NF-kappa B and AP-1. Mol Cell 1998; 1: 543–551.

    Google Scholar 

  136. Kuhnel F, Zender L, Paul Y, et al. NFkappaB mediates apoptosis through transcriptional activation of Fas (CD95) in adenoviral hepatitis. J Biol Chem 2000; 275: 6421–6427.

    Google Scholar 

  137. Ravi R, Bedi GC, Engstrom LW, et al. Regulation of death receptor expression and TRAIL/Apo2L-induced apoptosis by NF-kappaB. Nat Cell Biol 2001; 3: 409–416.

    Google Scholar 

  138. Battaglino R, Kim D, Fu J, Vaage B, Fu XY, Stashenko P. c-myc is required for osteoclast differentiation. J Bone Miner Res 2002; 17: 763–773.

    Google Scholar 

  139. Jimi E, Nakamura I, Ikebe T, Akiyama S, Takahashi N, Suda T. Activation of NF-kappaB is involved in the survival of osteoclasts promoted by interleukin-1. J Biol Chem 1998; 273: 8799–8805.

    Google Scholar 

  140. Kanegae Y, Tavares AT, Izpisua Belmonte JC, Verma IM. Role of Rel/NF-kappaB transcription factors during the outgrowth of the vertebrate limb. Nature 1998; 392: 611–614.

    Google Scholar 

  141. Boyce BF, Xing L, Franzoso G, Siebenlist U. Required and nonessential functions of nuclear factor-kappa B in bone cells. Bone 1999; 25: 137–139.

    Google Scholar 

  142. Wei S, Teitelbaum SL, Wang MW, Ross FP. Receptor activator of nuclear factor-kappa b ligand activates nuclear factor-kappa b inosteoclast precursors. Endocrinology 2001; 142: 1290–1295.

    Google Scholar 

  143. Wang J, Lin Q, Langston H, Cooper MD. Resident bone marrow macrophages produce type 1 interferons that can selectively inhibit interleukin-7-driven growth of B lineage cells. Immunity 1995; 3: 475–484.

    Google Scholar 

  144. Takayanagi H, Kim S, Matsuo K, et al. RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta. Nature 2002; 416: 744–749.

    Google Scholar 

  145. Haridas V, Shrivastava A, Su J, et al. VEGI, a new member of the TNF family activates nuclear factor-kappa B and c-Jun N-terminal kinase and modulates cell growth. Oncogene 1999; 18: 6496–6504.

    Google Scholar 

  146. Rennert P, Schneider P, Cachero TG, et al. A soluble form of B cell maturation antigen, a receptor for the tumor necrosis factor family member APRIL, inhibits tumor cell growth. J Exp Med 2000; 192: 1677–1684.

    Google Scholar 

  147. Funakoshi S, Longo DL, Beckwith M, et al. Inhibition of human B-cell lymphoma growth by CD40 stimulation. Blood 1994; 83: 2787–2794.

    Google Scholar 

  148. Peguet-Navarro J, Dalbiez-Gauthier C, Moulon C, et al. CD40 ligation of human keratinocytes inhibits their proliferation and induces their differentiation. J Immunol 1997; 158: 144–152.

    Google Scholar 

  149. Woo KM, Choi Y, Ko SH, Ko JS, Oh KO, Kim KK. Osteoprotegerin is present on the membrane of osteoclasts isolated from mouse long bones. Exp Mol Med 2002; 34: 347–352.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bharti, A.C., Aggarwal, B.B. Ranking the role of RANK ligand in apoptosis. Apoptosis 9, 677–690 (2004). https://doi.org/10.1023/B:APPT.0000045780.10463.c6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:APPT.0000045780.10463.c6

Navigation