Skip to main content
Log in

The transformation of inorganic sulfur compounds and the assimilation of organic and inorganic carbon by the sulfur disproportionating bacterium Desulfocapsa sulfoexigens

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The physiology of the sulfur disproportionator Desulfocapsa sulfoexigens was investigated in batch cultures and in a pH-regulated continuously flushed fermentor system. It was shown that a sulphide scavanger in the form of ferric iron was not obligatory and that the control of pH allowed production of more biomass than was possible in carbonate buffered but unregulated batch cultures. Small amounts of sulphite were produced during disproportionation of elemental sulfur and thiosulphate. In addition, it was shown that in the presence of hydrogen, a respiratory type of process is favored before the disproportionation of sulphite, thiosulphate and elemental sulfur. Sulphate reduction was not observed. D. sulfoexigens assimilated inorganic carbon even in the presence of organic carbon sources. Inorganic carbon assimilation was probably catalyzed by the reverse CO-dehydrogenase pathway, which was supported by the constitutive expression of the gene encoding CO-dehydrogenase in cultures grown in the presence of acetate and by the high carbon fractionation values that are indicative of this pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bak F. and Cypionka H. 1987. A novel type of energy metabolism involving fermentation of inorganic sulfur compounds. Nature 326: 891-892.

    Google Scholar 

  • Bak F. and Pfennig N. 1987. Chemolithotrophic growth of Desulfovibrio sulfodismutans sp.nov. by disproportionation of inorganic sulfur compounds. Arch. Microbiol. 147: 184-189.

    Google Scholar 

  • Canfield D. and Thamdrup B. 1994. The production of 34S-depleted sulphide during bacterial disproportionation of elemental sulfur. Science 266: 1973-1975.

    Google Scholar 

  • Canfield D. and Thamdrup B. 1996. The fate of elemental sulfur in an intertidal sediment. FEMS Microbiol. Ecol. 19: 95-103.

    Google Scholar 

  • Cline J.D. 1969. Spectrophotometric determination of hydrogen sulphide in natural waters. Limnol. Oceanogr. 14: 454-458.

    Google Scholar 

  • Cypionka H., Smock A.M. and Böttcher M.E. 1998. A combined pathway of sulfur compound disproportionation in Desulfovivrio desulfuricans. FEMS Microbiol. Lett. 166: 181-186.

    Google Scholar 

  • Dannenberg S., Kroder M., Dilling W. and Cypionka H. 1992. Oxidation of H, organic-compounds and inorganic sulfur-compounds coupled to reduction of O2 or nitrate by sulphate-reducing bacteria. Arch. Microbiol. 158: 93-99.

    Google Scholar 

  • Diekert G.B. and Thauer R.K. 1978. Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium forwith micoaceticum. J. Bacteriol. 136: 597-606.

    Google Scholar 

  • Fauque G.D. 1994. Sulfur reductase from thiophilic sulphate-reducing bacteria. In: Peck HD Jr. and LeGall J. (ed.), Methods in Enzymology. Academic Press, New York, Vol. 243:, pp. 353-367.

    Google Scholar 

  • Finster K., Liesack W. and Thamdrup B. 1998. Elemental sulfur and thiosulphate disproportionation by Desulfocapsa sulfoexigens sp nov, a new anaerobic bacterium isolated from marine surface sediment. Appl. Environ. Microbiol. 61: 119-125.

    Google Scholar 

  • Frederiksen T.M. and Finster K. 2003. Sulfite-oxido-reductase is involved in the oxidation of sulfite in Desulfocapsa sulfoexigens during disproportionation of thiosulfate and elemental sulfur. Biodegradation 14: 189-198.

    Google Scholar 

  • Friedrich C.G., Rother D., Bardischewsky F., Quentmeier A. and Fischer J. 2001. Oxidation of reduced inorganic sulfur comdisproportionation pounds by bacteria: Emergence of a common mechanism? Appl. Environ. Microbiol. 67: 2873-2882.

    Google Scholar 

  • Fuchs G. 1989. Alternative pathways of autotrophic CO2 fixation. In: Schlegel H.G. and Bowien B. (eds), Autotrophic Bacteria. Science Tech, New York, pp. 365-382.

    Google Scholar 

  • Hallbeck L. and Pedersen K. 1991. Autotrophic and mixotrophic growth of Gallionella ferruginea. J. Gen. Microbiol. 137: 2657-2661.

    Google Scholar 

  • Isaksen M. and Finster K. 1996. Suphate reduction in the root zone of the seagrass Zostera noltii om the intertidal flats of a coastal relagoon (Arcachon, France). Mar. Ecol. Prog. Ser. 157: 187-194.

    Google Scholar 

  • Jansen P.H., Schuhmann A., Bak F. and Liesack W. 1996. Disproportionation of inorganic sulfur compounds by the sulphatereducing bacterium Desulfocapsa thiozymogenes gen. nov., sp. nov. Arch. Microbiol. 166: 184-192.

    Google Scholar 

  • Jørgensen B.B. 1990. A thiosulphate shunt in the sulfur cycle of marine sediments. Science 249: 152-154.

    Google Scholar 

  • Jørgensen B.B. and Bak F. 1991. Pathways and microbiology of thiosulphate transformations, and sulphate reduction in a marine sediment (Kattegat, Denmark). Appl. Environ. Microbiol. 57: 847-856.

    Google Scholar 

  • Kappler U. and Dahl C. 2001. Enzymology and molecular biology of prokaryotic sulphite oxidation. FEMS Microbiol. Lett. 203: 1-9.

    Google Scholar 

  • Kelly D.P., Shergill J.K., Lu W.P. and Wood A.P. 1997. Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie van Leeuwenhoek 71: 95-107.

    Google Scholar 

  • Knoll A.H. and Canfield D.E. 1998. Isotopic interference on early ecosystems. In: Norris R.D. and Corfield R.M. (eds), Isotope Paleobiology and Paleoecology. The Paleontological Society Papers, Vol. 4:, pp. 212-243.

  • Krämer M. and Cypionka H. 1989. Sulphate formation via ATP-sulfurylase in thiosulphate-disproportionating and sulphite-disproportionating bacteria. Arch. Microbiol. 151: 232-237.

    Google Scholar 

  • Langdahl B. and Ingvorsen K. 1997. Temperature characteristics of bacterial solubilisation and 14C assimilation in naturally exposed sulphide ore material at Citronen Fjord, North Greenland (83ºN). FEMS Microbiol. Ecol. 23: 275-283.

    Google Scholar 

  • Lovley D.R. and Phillips E.J.P. 1986. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl. Environ. Microbiol. 51: 683-689.

    Google Scholar 

  • Lovley D.R. and Phillips E.J.P. 1994. Novel processes for anaerobic sulphate production from elemental sulfur by sulphate reducing bacteria. Appl. Environ. Microbiol. 60: 2394-2399.

    Google Scholar 

  • Mopper K. and Dalmas D. 1984. Trace determination of biological thiols by liquid chromatography and precolumn fluorometric labeling with o-phthalaldehyde. Anal. Chem. 56: 2557-2560.

    Google Scholar 

  • Obraztsova A.Y., Francis C.A. and Tebo B.M. 2002. Sulfur dis-proportionation by the facultative anaerobe Pantoea agglomerans SP1 as a mechanism for chromium (VI) reduction. Geomicrobiol. J. 19: 121-132.

    Google Scholar 

  • Pachmayr F. 1960. Vorkommen und Bestimmung von Schwefelverbindungen in Mineralwasser. PhD thesis. University München.

  • Thamdrup B., Finster K., Hansen J.W. and Bak F. 1993. Bacterial comdisproportionation of elemental sulfur coupled to chemical reduction of iron and manganese. Appl. Environ. Microbiol. 59: 101-108.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frederiksen, TM., Finster, K. The transformation of inorganic sulfur compounds and the assimilation of organic and inorganic carbon by the sulfur disproportionating bacterium Desulfocapsa sulfoexigens . Antonie Van Leeuwenhoek 85, 141–149 (2004). https://doi.org/10.1023/B:ANTO.0000020153.82679.f4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ANTO.0000020153.82679.f4

Navigation