Skip to main content
Log in

Determining Modes for Continuous Data Assimilation in 2D Turbulence

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the number of determining modes necessary for continuous data assimilation in the two-dimensional incompressible Navier–Stokes equations. Our focus is on how the spatial structure of the body forcing affects the rate of continuous data assimilation and the number of determining modes. We treat this problem analytically by proving a convergence result depending on the H −1 norm of f and computationally by considering a family of forcing functions with identical Grashof numbers that are supported on different annuli in Fourier space. The rate of continuous data assimilation and the number of determining modes is shown to depend strongly on the length scales present in the forcing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. P. Aubin,, Un thÉorÈme de compacitÉ, C. R. Acad. Sci. Paris SÉr. I Math. 256:5042-5044 (1963).

    Google Scholar 

  2. G. L. Browning, W. D. Henshaw, and H. O. Kreiss, A numerical investigation of the interaction between the large and small scales of the two-dimensional incompressible Navier-Stokes equations, UCLA CAM Technical Report 98-23, ftp://ftp.math.ucla.edu/pub/camreport/cam98-23[a-d].ps.gz, April 1998.

  3. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer Series in Computational Physics (Springer-Verlag, 1988).

  4. C. Cao, M. A. Rammaha, and E. S. Titi, The Navier-Stokes equations on the rotating 2D sphere: Gevrey regularity and asymptotic degrees of freedom, Z. Angew. Math. Phys. 50:341-360 (1999).

    Google Scholar 

  5. J. Charney, M. Halem, and R. Jastrow, Use of incomplete historical data to infer the present state of the atmosphere, J. Atmos. Sci. 26:1160-1163 (1969).

    Google Scholar 

  6. B. Cockburn, D. A. Jones, and E. S. Titi, Determining degrees of freedom for nonlinear dissipative equations, C. R. Acad. Sci. Paris SÉr. I Math. 321:563-568 (1995).

    Google Scholar 

  7. B. Cockburn, D. A. Jones, and E. S. Titi, Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems, Math. Comp. 66:1073-1087 (1997).

    Google Scholar 

  8. P. Constantin, C. R. Doering, and E. S. Titi, Rigorous estimates of small scales in turbulent flows, J. Math. Phys. 37:6152-6156 (1996).

    Google Scholar 

  9. P. Constantin and C. Foias, Navier-Stokes Equations, Chicago Lectures in Mathematics (University of Chicago Press, Chicago, IL, 1988).

    Google Scholar 

  10. P. Constantin, C. Foias, and O. P. Manley, Effects of the forcing function spectrum on the energy spectrum in 2-D turbulence, Phys. Fluids 6:427-429 (1994).

    Google Scholar 

  11. P. Constantin, C. Foias, and R. Temam, On the dimension of the attractors in two-dimensional turbulence, Physica D 30:284-296 (1988).

    Google Scholar 

  12. R. Daley, Atmospheric Data Analysis, Cambridge Atmospheric and Space Science Series (Cambridge University Press, 1991).

  13. A. Debussche and M. Marion, On the construction of families of approximate inertial manifolds, J. Differential Equations 100:173-201 (1992).

    Google Scholar 

  14. C. Devulder and M. Marion, A class of numerical algorithms for large time integration: The nonlinear Galerkin methods, SIAM J. Numer. Anal. 29:462-483 (1992).

    Google Scholar 

  15. C. Devulder, M. Marion, and E. S. Titi, On the rate of convergence on the nonlinear Galerkin methods, Math. Comp. 60:495-514 (1993).

    Google Scholar 

  16. C. R. Doering and J. D. Gibbon, Applied Analysis of the Navier-Stokes Equations, Cambridge Texts in Applied Mathematics (Cambridge University Press, 1995).

  17. T. Debios, F. Jauberteau, and R. Temam, The nonlinear Galerkin method for the two and three-dimensional Navier-Stokes equations. Twelfth International Conference on Numerical Methods in Fluid Dynamics (Oxford, 1990), Lecture Notes in Phys., Vol. 371 (Springer, 1990), pp. 116-120.

  18. C. Foias, M. S. Jolly, I. G. Kevrekidis, G. R. Sell, and E. S. Titi, On the computation of inertial manifolds, Phys. Lett. A 31:433-436 (1988).

    Google Scholar 

  19. C. Foias, O. P. Manley, and R. Temam, Approximate inertial manifolds and effective viscosity in turbulent flows, Phys. Fluids A 3:898-911 (1991).

    Google Scholar 

  20. C. Foias, O. P. Manley, and R. Temam, Iterated approximate inertial manifolds for Navier-Stokes equations in 2-D, J. Math. Anal. Appl. 178:567-583 (1993).

    Google Scholar 

  21. C. Foias, O. P. Manley, R. Temam, and Y. TrÈve, Asymptotic analysis of the Navier-Stokes equations, Physica D 9:157-188 (1983).

    Google Scholar 

  22. C. Foias and G. Prodi,, Sur le comportement global des solutions non stationnaires des Équations de Navier-Stokes en dimension two, Rend. Sem. Mat. Univ. Padova 39:1-34 (1967).

    Google Scholar 

  23. C. Foias, G. R. Sell, and E. S. Titi, Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations, J. Dynam. Differential Equations 1:199-244 (1989).

    Google Scholar 

  24. C. Foias and R. Temam, Determination of the solutions of the Navier-Stokes equations by a set of nodal values, Math. Comput. 43:117-133 (1984).

    Google Scholar 

  25. C. Foias and R. Temam, The connection between the Navier-Stokes equations, dynamical systems, and turbulence theory. Directions in partial differential equations (Madison, WI, 1985), pp. 55-73, Publ. Math. Res. Center Univ. Wisconsin, Vol. 54 (Academic Press, Boston, MA, 1987).

    Google Scholar 

  26. M. Frigo and S. G. Johnson, The fastest fourier transform in the west, MIT Technical Report, MIT-LCS-TR-728, http://www.fftw.org/ (1997).

  27. W. D. Henshaw, H. O. Kreiss, and L. G. Reyna, On the smallest scale for the incompressible Navier-Stokes equations, Theor. Comp. Fluid Dynam. 1:65-95 (1989).

    Google Scholar 

  28. M. J. Holst and E. S. Titi, Determining projections and functionals for weak solutions of the Navier-Stokes equations, Recent Developments in Optimization Theory and Nonlinear Analysis (Jerusalem, 1995), Contemp. Math., Vol. 204 (Amer. Math. Soc., Providence, RI, 1997), 125-138.

    Google Scholar 

  29. M. S. Jolly, Bifurcation computations on an approximate inertial manifold for the 2D Navier-Stokes equations, Physica D 63:8-20 (1993).

    Google Scholar 

  30. M. S. Jolly, I. G. Kevrekidis, and E. S. Titi, Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations, Physica D 44:38-60 (1990).

    Google Scholar 

  31. D. A. Jones and E. S. Titi, On the number of determining nodes for the 2D Navier-Stokes equations, J. Math. Anal. Appl. 168:72-88 (1992).

    Google Scholar 

  32. D. A. Jones and E. S. Titi, Upper bounds on the number of determining modes, nodes, and volume elements for the Navier-Stokes equations, Indiana Univ. Math. J. 42:875-887 (1993).

    Google Scholar 

  33. H. O. Kreiss and J. YstrÖm, Numerical experiments on the interaction between large and small-scale motion of incompressible turbulent flows, J. Fluid Mech., to appear.

  34. O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, 2nd English Ed., Translated from the Russian by Richard A. Silverman and John Chu, Mathematics and Its Applications, Vol. 2 (Gordon & Breach, Science Publishers, New York, 1969).

    Google Scholar 

  35. O. A. Ladyzhenskaya, On the dynamical system generated by the Navier-Stokes equations, J. Soviet Math. 3:458-479 (1975).

    Google Scholar 

  36. J. L. Lions and E. Magenes, Nonhomogeneous Boundary Value Problems and Applications (Springer, Berlin, 1972).

    Google Scholar 

  37. C. Marchioro, An example of absence of turbulence for any Reynolds number, Comm. Math. Phys. 105:99-106 (1986).

    Google Scholar 

  38. N. Platt, L. Sirovich, and N. Fitzmaurice, An investigation of chaotic Kolmogorov flows, Phys. Fluids A 3:681-696 (1991).

    Google Scholar 

  39. J. C. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Texts in Applied Mathematics (Cambridge Unniversity Press, 2001).

  40. R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, revised edition (AMS Chelsea Publishing, 1984).

  41. R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, 2nd ed., CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 66 (SIAM, 1995).

  42. E. S. Titi, On a criterion for locating stable stationary solutions to the Navier-Stokes equations, Nonlinear Anal. 11:1085-1102 (1987).

    Google Scholar 

  43. Y. M. TrÈve and O. P. Manley, Minimum number of modes in approximate solutions of equations of hydrodynamics, Phys. Lett. A 82:88(1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olson, E., Titi, E.S. Determining Modes for Continuous Data Assimilation in 2D Turbulence. Journal of Statistical Physics 113, 799–840 (2003). https://doi.org/10.1023/A:1027312703252

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027312703252

Navigation