Skip to main content
Log in

Characterization by molecular cloning and sequencing of the gene encoding an aminopeptidase from Listeria monocytogenes

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The pepC gene of Listeria monocytogenes encodes aminopeptidase C that is predicted to share 72% amino acid sequence similarity and 53% sequence identity with the cysteine aminopeptidase PepC from Lactococcus lactis. The gene product also shows strong similarity to aminopeptidase C from Streptococcus thermophilus and Lactobacillus helveticus, and to a cysteine proteinase/bleomycin hydrolase from Saccharomyces cerevisiae. The enzyme from L. monocytogenes displayed broad N-terminal hydrolytic activity, with a similar substrate specificity to its lactic acid bacterial counterpart. The inhibition spectrum shows a great deal of similarity with enzymes from the family of lactic acid bacteria. In addition, one of the clones studied contained DNA sequences that could encode a regulatory protein of the deoR helix-turn-helix DNA binding protein family. The organization of the locus, designated pep, is presented along with the characterization of the gene products of the pep locus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW & Lipman DJ (1990) Basic local alignment search tool. J. Mol. Biol. 215: 403–410

    Article  PubMed  Google Scholar 

  • Amezaga M-R, Davidson I, McLaggan D, Verheul A, Abee T, & Booth IR (1995) The role of peptide metabolism in the growth of Listeria monocytogenes ATCC 23074 at high osmolarity. Microbiol. 141: 41–49

    Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Smith JA, Seidman JG & Struhl K (Eds.) (1987) Current protocols in molecular biology. John Wiley & Sons, Inc, New York

    Google Scholar 

  • Bairoch A, Bucher P, & Hofmann K (1997) The PROSITE database, its status in 1997. Nucleic Acids Res 25: 217–221

    PubMed  Google Scholar 

  • Beck von Bodman S, Hayman GT & Farrand SK (1992) Opine catabolism and conjugal transfer of the nopaline Ti plasmid pTiC58 are coordinately regulated by a single repressor. Proc. Natl. Acad. Sci. USA 89: 643–647

    PubMed  Google Scholar 

  • Bhunia AK, Ball PH, Fuad AT, Kurz BW, Emerson JW & Johnson MG (1991) Development and characterization of a monoclonal antibody specific for Listeria monocytogenes and Listeria innocua. Infect. Immun. 59: 3176–3184

    PubMed  Google Scholar 

  • Bhunia AK & Johnson MG (1992) Monoclonal antibody specific for Listeria monocytogenes associated with a 66–kilodalton cell surface antigen. Appl. Environ. Microbiol. 58: 1924–1929

    PubMed  Google Scholar 

  • Christensen DP & Hutkins RW (1994) Glucose uptake by Listeria monocytogenes Scott A and inhibition by pediocin JD. Appl. Environ. Microbiol. 60: 3870–3873

    PubMed  Google Scholar 

  • Corpet F, Gouzy J & Kahn D (1998) The ProDom database of protein domain families. Nucleic Acids Res. 26: 323–326

    PubMed  Google Scholar 

  • Del Sal G, Manfiolettti G & Schneider C (1989) The CTAB-DNA precipitation method. Biotechniques 7: 514–519

    PubMed  Google Scholar 

  • Devereux J, Haeberli P & Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12: 387–395

    PubMed  Google Scholar 

  • Doi E, Shibata D & Matoba T (1981) Modified colorimetric ninhydrin methods for peptidase assay. Analyt. Biochem. 118: 173–184

    PubMed  Google Scholar 

  • Eggimann B & Bachmann M (1980) Purification and partial characterization of an aminopeptidase from Lactobacillus lactis. Appl. Environ. Microbiol. 40: 876–882

    Google Scholar 

  • Flamm RK, Hinrichs DJ & Thomashow MF (1984) Introduction of PAMB 1 into L. monocytogenes by conjugation and homology between native L. monocytogenes plasmid. Infect. Immun. 44: 157–164

    PubMed  Google Scholar 

  • Gerhardt PNM, Smith LT & Smith GM (1996) Sodium-driven, osmotically activated glycine betaine transport in Listeria monocytogenes membrane vesicles. J. Bacteriol. 178: 6105–6109

    PubMed  Google Scholar 

  • Gobbetti M, Smacchi E & Corsetti A (1996) The proteolytic system of Lactobacillus sanfransicso CB1: purification and characterization of a proteinase, a dipeptidase, and an aminopeptidase. Appl. Environ. Microbiol. 62: 3220–3226

    PubMed  Google Scholar 

  • Husain SS, & Lowe S (1968) Evidence for histidine in the active site of papain. Biochem J. 108: 855–859

    PubMed  Google Scholar 

  • Joshua-Tor L, Xu HE, Johnston SA & Rees DC (1995) Crystal structure of a conserved protease that binds DNA: the bleomycin hydrolase, Gal6. Science 269: 945–950

    PubMed  Google Scholar 

  • Kamphuis IG, Renth J & Baker EN (1985) Thiol proteases. Comparative studies based on the high-resolution structures of papain and actinidin, and on amino acid sequence information for cathepsins B and H, and stem bromelain. J. Mol. Biol. 182: 317–329

    PubMed  Google Scholar 

  • Klein JR, Ulrich C, Wegmann U, Meyer-Barton E, Plapp R & Henrich B (1995) Molecular tools for the genetic modification of dairy Lactobacilli. System. Appl. Microbiol. 18: 493–503

    Google Scholar 

  • Kok J (1996) Inducible gene expression and environmentally regulated genes in lactic acid bacteria. Antonie van Leeuwenhoek 70: 129–145

    PubMed  Google Scholar 

  • Kok J. & deVos WM (1994) The proteolytic system of lactic acid bacteria. In: Gasson MJ & de Vos WM (Eds) Genetics and biotechnology of lactic acid bacteria. Blackie Academic & Professional Press, New York

    Google Scholar 

  • Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S, Borriss R, Boursier L, Brans A, Braun M, Brignell SC, Bron S, Brouillet S, Bruschi CV, Caldwell B, Capuano V, Carter NM, Choi SK, Codani JJ, Connerton IF & Danchin A et al. (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249–256

    PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL & Randall RJ (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275

    PubMed  Google Scholar 

  • Magni C, Marini P & de Mendoza D (1995) Extraction of RNA from Gram-positive bacteria. Biotechniques 19: 880–884

    PubMed  Google Scholar 

  • Marquis H, Bouwer HGA Henrichs DJ & Portnoy DA (1993) Intracytoplasmic growth and virulence of Listeria monocytogenes auxotrophic mutants. Infect. Immun. 61: 3756–3760

    PubMed  Google Scholar 

  • Mata L, Erra-Pujada M, Gripon JC & Mistou MY (1997) Experimental evidence for the essential role of the C-terminal residue in the strict aminopeptidase activity of the thiol aminopeptidase pepC, a bacterial bleomycin hydrolase. Biochem. J. 328: 343–347

    PubMed  Google Scholar 

  • Mierau I, Kunju ERS, Leenhouts KJ, Hellendoorn MA, Haandrikman AJ, Poolman B, Konings WN, Venema G, & Kok J (1996) Multiple-peptidase mutants of Lactococcus lactis are severly impaired in their ability to grow in milk. J. Bacteriol. 178: 2794–2803

    PubMed  Google Scholar 

  • Neviani E, Boquien CY, Monnet V, Thanh LP & Gripon JC (1989) Purification and characterization of an aminopeptidase from Lactococcus lactis subsp. cremoris AM2. Appl. Environ. Microbiol. 55: 2308–2314

    Google Scholar 

  • Neviani E, Giraffa G, Brizzi A & Carminati D (1995) Amino acid requirements and pepidase activities of Streptococcus salivarius subsp. thermophilus. J. Appl. Bacteriol. 79: 302–307

    PubMed  Google Scholar 

  • Ogretman B, Ratajczak H, Kats A & Stark BC (1993) Effects of staining of RNA with ethidium bromide before electrophoresis on performance of northern blots. Biotechniques 14: 932–935

    PubMed  Google Scholar 

  • Parker C & Hutkins RW (1997) Listeria monocytogenes Scott A transports glucose by high-affinity and low-affinity glucose transport systems. Appl. Environ. Microbiol. 63: 543–546

    PubMed  Google Scholar 

  • Peitsch MC (1996) ProMod and Swiss-Model: Internet-based tools for automated comparative protein modeling. Biochem. Soc. Trans. 24: 274–279

    PubMed  Google Scholar 

  • Poolman B, Kunji ERS, Hagting A, Julliard V & Konings WN (1995) The proteolytic pathway of Lactococcus lactis. J. Appl. Bacteriol. Sympos. Suppl. 79: 65S–75S

    Google Scholar 

  • Portnoy DA, Chakraborty T, Goebel W & Cossart P (1992) Molecular determinants of Listeria monocytogenes pathogenesis. Infect. Immun. 60: 1263–1267

    PubMed  Google Scholar 

  • Sambrook J, Fritsch EF & Maniatis T (1989) Molecular Cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Schagger H & Von Jagow G (1987) Tricine-sodium dodecyl sulfatepolyacrylamide gel electrophoresis for the separation of proteins in the range of 1 to 100 kDa. Anal. Biochem. 166: 368–379

    PubMed  Google Scholar 

  • Stucky K, Schick J, Klein JR, Henrich B, Plapp R (1996) Characterization of pepR1, a gene coding for a potential transcriptional regulator of Lactobacillus delbrueckii subsp. lactis DSM 7290. FEMS Microbiol. Lett. 136: 63–69

    PubMed  Google Scholar 

  • Towbin HH, Staaehelin T & Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76: 4350–4354

    PubMed  Google Scholar 

  • Tsakalidou E & Kalantzopoulos G (1992) Purification and partial characterization of an intracellular aminopeptidase from Streptococcus salivarius subsp. thermophilus strain ACA-DC 114. J. Appl. Bacteriol. 72: 227–232

    PubMed  Google Scholar 

  • Tsang SS, Yin X, Guzzo-Arkuran C, Jones VS & Davison AJ (1993) Loss of resolution in gel electrophoresis of RNA: a problem associated with the presence of formaldehyde gradients. Biotechniques 14: 380–381

    PubMed  Google Scholar 

  • Verheul A, Hagting A, Amezaga MR, Booth IR, Rombouts FM & Abee J (1995a) A di-and tripeptide transport system can supply Listeria monocytogenes Scott A with amino acids essential for growth. Appl. Environ. Microbiol. 61: 226–233

    PubMed  Google Scholar 

  • Verheul A, Rombouts FM, Beumer RR & Abee T (1995b) An ATP-dependent L-carnitine transporter in Listeria monocytogenes Scott A is involved in osmoprotection. J. Bacteriol. 177: 3205–3212

    PubMed  Google Scholar 

  • Verheul A, Rombouts FM & Abee T (1998) Utilization of oligopeptides by Listeria monocytogenes Scott A. Appl. Environ. Microbiol. 64: 1059–1065

    PubMed  Google Scholar 

  • Vernet T, Tessier DC, Chatellier J, Plouffe C, Lee TS, Thomas DY, Storer AC & Menard R (1995) Structural and functional roles of asparagine 175 in the cysteine protease papain. J. Biol. Chem. 270: 16645–16652

    PubMed  Google Scholar 

  • Vesanto E, Varmanen P, Steele JL & Palva A (1994) Characterization and expression of the Lactobacillus helveticus pepC gene encoding a general aminopeptidase. Eur. J. Biochem. 224: 991–997

    PubMed  Google Scholar 

  • Winters DK, Maloney TP & Johnson MG (1999) Rapid detection of Listeria monocytogenes by a PCR assay specific for an aminopeptidase. Mol. and Cell. Probes 13: 127–131

    Google Scholar 

  • Winters DK & Cederbaum AI (1992) Expression of a catalytically active human cytochrome P-4502EI in Escherichia coli. Biochem. Biophys. Acta. 1156: 43–49

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Mack Ivey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winters, D.K., Mack Ivey, D., Maloney, T.P. et al. Characterization by molecular cloning and sequencing of the gene encoding an aminopeptidase from Listeria monocytogenes. Antonie Van Leeuwenhoek 78, 141–151 (2000). https://doi.org/10.1023/A:1026549118087

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026549118087

Navigation