Skip to main content
Log in

High Levels of Orexin A in the Brain of the Mouse Model for Phenylketonuria: Possible Role of Orexin A in Hyperactivity Seen in Children with PKU

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Phenylketonuria (PKU) is a metabolic disorder caused by phenylalanine hydroxylase deficiency leading to increased levels of phenylalanine in the brain. Hyperactivity is reportedly induced by a high level of orexin A, and therefore orexin A content was studied in the PKU mice. Hypothalamus and brain stem had higher levels of orexin A compared to cerebrum and cerebellum both in wild type and PKU mice brains as observed by radioimmunoassay method. Interestingly, all these regions of the brain in PKU mouse showed a higher level of orexin A compared to the wild type. Heart and plasma also had higher levels of orexin A in PKU compared to the wild type. Immunohistochemical analysis revealed an increased number of orexin A–stained cells in the brain and heart of PKU mouse compared to the wild type. This is the first report of increased level of orexin in the PKU mouse brain. Hyperactivity is commonly observed in children with PKU; thus these findings suggest that orexin A is a contributing factor for the hyperactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Folling, A. 1934. Uber Ausscheidung von phenylbrenztraubensaure in den Harn als Stoffwechselanomalie in verbingdung mit imbezillitat. Hoppe-Seylers Z. Physiol. Chem. 227:169-176.

    Google Scholar 

  2. Penrose, L. S. 1935. Inheritance of phenylpyruvic amenta (phenylketonuria). Lancet 2:192-194.

    Google Scholar 

  3. Kaufman, S. and Fisher, D. B. 1974. Pterin-requiring aromatic acid hydroxylases, Pages 285-369, in Hayaishi, O. (ed.), Molecular mechanisms of oxygen activation, Academic press, New York.

    Google Scholar 

  4. Lenke, R. R. and Levy, H. L. 1994. Maternal phenylketonuria and hyperphenylalaninemias of man and mouse. Ann. Rev. Genet. 303:1202-1208.

    Google Scholar 

  5. Rouse, B., Lockhart, L., Matalon, R., Azen, C., Koch, R., Hanley, W., Levy, H., Dela Cruz, F., and Friedman, E. 1990. Maternal phenylketonuria pregnancy outcome: A preliminary report of facial dysmorphology and major malformations. J. Inher. Metab. Dis. 13:289-291.

    Google Scholar 

  6. Cowie, V. A. 1971. Neurological and psychiatric aspects of phenylketonuria. Pages 29-39, in Bickel, H., Hudson, F. P., and Woolf, L. I. (eds.), Phenylketonuria and some other inborn errors of aminoacid metabolism, George Thieme Verlag, Stuttgart.

    Google Scholar 

  7. Hendrikx, M. M. T., van der Schot, L. W. A., Slijper, F. M. E., Huisman, J., and Kalverboer, A. F. 1994. Phenylketonuria and some aspects of emotional development. Eur. J. Pediatr. 153:832-835.

    Google Scholar 

  8. Kalverboer, A. F., van der Schot, L. W. A., Hendrikx, M. M. T., Huiman, J., Slijper, F. M. E., and Stemerdink, B. A. 1994. Social behavior and task orientation in early treated PKU. Acta Paediatr. 83(S407):104-105.

    Google Scholar 

  9. Realmuto, G. M., Garfinkel, B. D., Tuchman, M., Tsai, M. Y., Chang, P. N., Pisch, R. O., and Shapiro, S. 1986. Psychiatric diagnosis and behavioral characteristics of phenylketonuric children. J. Nerv. Ment. Dis. 174:536-540.

    Google Scholar 

  10. McDonald, J. D., Dyer, C. A., Gailis, L., and Kirby, M. 1997. Cardiovascular defects among the progeny of mouse phenylketonuria females. Pediatr. Res. 42:103-107.

    Google Scholar 

  11. de Lecea, L., Kilduff, T. S., Peyron, C., Gao, X., Foye, P. E., Danielson, P. E., Fukuhara, C., Battenberg, E. L., Gautvig, B. T., Barlett, F. S., Frankel, W. N., van den Pol, A. N., Bloom, F. E., Gautvik, K. M., and Sutkliff J. G. 1998. The hypocretins: Hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl. Acad. Sci. USA 95:322-327.

    Google Scholar 

  12. Sakurai, T., Amemiya, A., Ishii, M., Matsuzaki, I., Chemelli, R. M., Tanaka, H., Williams, S. C., Richarson, J. A., Koslowski, G. P., Wilson, S., Arch, J. R., Buckingham, R. E., Haynes, A. C., Carr, S. A., Annan, R. S., McNulty, D. E., Liu, W. S., Terrett, J. A., Elshourbagy, N. A., Bergsma, D. J., and Yanagisawa, M. 1998. Orexins and orexin receptors: A family of hypothalamus neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573-585.

    Google Scholar 

  13. Peyron, C., Tighe, D. K., van den pol, A. N., de Lecea, L., Heller, H. C., Sutcliffe, J. G., and Kilduff, T. S. 1998. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 18:9996-10015.

    Google Scholar 

  14. Nambu, T., Sakurai, T., Mizukami, K., Hosoy, Y., Yanagisawa, M., and Goto, K. 1999. Distribution of orexin neurons in the adult rat brain. Brain Res. 827:243-260.

    Google Scholar 

  15. van den Pol, A. N. 1999. Hypothalamic hypocretin (orexin): Robust innervation of the spinal cord. J. Neurosci. 19:3171-3182.

    Google Scholar 

  16. Samson, W. K., Gosnell, B., Chang, J., Resch, Z. T., and Murphy, T. C. 1999. Cardiovascular regulatory action of hypocretins in brain. Brain Res. 831:248-253.

    Google Scholar 

  17. Shirasaka, T., Takasaki, M., and Kannan, H. 2003. Cardiovascular effects of leptin and orexins. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284:R639-R651.

    Google Scholar 

  18. Hagan, J. J., Leslie, R. A., Patel, S., Evans, M. L., Wattam, T. A., Holmes, S., Benhams, C. D., Tayler, S. G., Routledge, C., Hemmati, P., Munton, R. P., Ashmede, T. E., Shah, A. S., Hatcher, J. P., Hatcher, P. D., Jones, D. E., Smith, M. I., Piper, D. C., Hunter, A. J., Porter, R. A., and Upton, N. 1999. Orexin activates locus coeruleus cell firing and increases arousal in the rats. Proc. Natl. Acad. Sci. USA 96:10911-10916.

    Google Scholar 

  19. Ida, T., Nakahara, K., Katayama, N., Murakami, N., and Nakazato, M. 1999. Effect of lateral cerebroventricular injection of the appetite stimulating neuropeptide, orexin and neuropeptide Y on the various behavioral activities of rats. Brain Res. 821:526-529.

    Google Scholar 

  20. Taylor, M. M. and Samson, W. K. 2003. The other side of the orexins: Endocrine and metabolic actions. Am. J. Physiol. Endocrinol. Metab. 284:E13-E17.

    Google Scholar 

  21. Matalon, R., Rady, P. L., Platt, K. A., Skinner, H. B., Quast, M. J., Campbell, G. A., Matalon, K., Ceci, J. D., Tyring, S. K., Nehls, M., Surendran, S., Wei, J., Ezell, E. L. and Szucs, S. 2000. Knock out mouse for Canavan disease: A mouse model for gene transfer to the central nervous system. J. Gene Med. 2:165-175.

    Google Scholar 

  22. Kurose, T., Ueta, Y., Yamamoto, Y., Serino, R., Ozaki, Y., Saito, J., Nagata, S., and Yamashita, H. 2002. Effects of restricted feeding on the activity of hypothalamic orexin (OX)-A containing neurons and OX2 receptor mRNA level in the paraventricular nucleus of rats. Regul. Peptides 104:145-151.

    Google Scholar 

  23. Pitt, D. B. and Danks, D. M. 1991. The natural history of untreated phenylketonuria over 20 years. J. Pediatr. Child Health 27:189-190.

    Google Scholar 

  24. van der Knapp, M. S. and Valk, J. 1995. Magnetic resonance of myelin, myelination and myelin disorders. Springer, New York.

    Google Scholar 

  25. Matalon, R., Surendran, S., Michals-Matalon, K., Quast, M., Wei, J., Ezell, E., and Szucs, S. 2003. Future role of large neutral aminoacids in the transport of phenylalanine into the brain. Pediatrics (in press).

  26. Taheri, S., Mahmoodi, M., Opacka-Juffry, J., Ghatei, M. A. and Bloom, S. R. 1999. Distribution and quantification of immunoreactive orexin A in rat tissues. FEBS Lett. 457:157-161.

    Google Scholar 

  27. Shirasaka, T., Miyahara, S., Kunitake, T., Jin, Q. H., Kato, K., Takasaki, M., and Kannan, H. 1999. Sympathetic and cardiovascular actions of orexins in conscious rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 277:R1780-R1785.

    Google Scholar 

  28. Matsumura, K., Tsuchihashi, T., and Abe, I. 2001. Central orexin A augments sympathoadrenal outflow in conscious rabbits. Hypertension 3:1382-1387.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reuben Matalon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Surendran, S., Campbell, G.A., Tyring, S.K. et al. High Levels of Orexin A in the Brain of the Mouse Model for Phenylketonuria: Possible Role of Orexin A in Hyperactivity Seen in Children with PKU. Neurochem Res 28, 1891–1894 (2003). https://doi.org/10.1023/A:1026184127689

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026184127689

Navigation