Skip to main content
Log in

Thermally Induced Losses in Ultra-Cold Atoms Magnetically Trapped Near Room-Temperature Surfaces

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We have measured magnetic trap lifetimes of ultra-cold 87Rb atoms at distances of 5–1000 µm from surfaces of conducting metals with varying resistivity. Good agreement is found with a theoretical model for losses arising from near-field magnetic thermal noise, confirming the complications associated with holding trapped atoms close to conducting surfaces. A dielectric surface (silicon) was found in contrast to be so benign that we are able to evaporatively cool atoms to a Bose–Einstein condensate by using the surface to selectively adsorb higher energy atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. W. Hänsel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, Nature 13, 498(2001).

    Google Scholar 

  2. K. S. Johnson, et al., Phys. Rev. Lett. 81, 1137(1998).

    Google Scholar 

  3. H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, Phys. Rev. Lett. 87, 230401(2001).

    Google Scholar 

  4. A. E. Leanhardt, et al., Phys. Rev. Lett. 89, 040401(2002).

    Google Scholar 

  5. S. Schneider, et al., Phys. Rev. A 67, 023612(2003).

    Google Scholar 

  6. M. P. A. Jones, C. J. Vale, D. Sahagun, B. V. Hall, and E. A. Hinds, Phys. Rev. Lett. 91, 080401(2003).

    Google Scholar 

  7. M. Drndićc, K. S. Jonhson, J. H. Thywissen, M. Prentiss, and R. M. Westervelt, Appl. Phys. Lett. 72, 2906(1998); M. Vengalattore, W. Rooijakkers, and M. Prentiss, Phys. Rev. A 66, 053403(2002).

    Google Scholar 

  8. J. H. Thywissen, et al., Euro. Phys. J. D 7, 361(1999).

    Google Scholar 

  9. D. Müller, et al., Phys. Rev. A 63, 041602(2001).

    Google Scholar 

  10. E. Andersson, et al., Phys. Rev. Lett. 88, 100401(2002).

    Google Scholar 

  11. W. Hänsel, J. Reichel, P. Hommelhoff, and T. W. Hänsch, Phys. Rev. A 64, 063607(2001).

    Google Scholar 

  12. P. Horak, et al., Phys. Rev. A 67, 043806(2003).

    Google Scholar 

  13. J. Fortágh, H. Ott, S. Kraft, A. Günther, and C. Zimmermann, Phys. Rev. A 66, 041604(2002).

    Google Scholar 

  14. A. E. Leanhardt, et al., Phys. Rev. Lett. 90, 100404(2003).

    Google Scholar 

  15. S. Kraft, et al., J. Phys. B 35, L469(2002).

    Google Scholar 

  16. C. Henkel, S. Pötting, and M. Wilkens, Appl. Phys. B 69, 379(1999).

    Google Scholar 

  17. H. J. Lewandowski, D. M. Harber, D. L. Whitaker, and E. A. Cornell, J. Low Temp. Phys. 132, 309(2003).

    Google Scholar 

  18. Imaging is performed by transferring the atoms from |F=1, mf=−1〉→|F=2, mf=−2〉 through adiabatic rapid passage. The antitrapped atoms rapidly expand, and are imaged through absorption with a 40 μs pulse of 5S1/2 |2, −2〉→5P3/2 |3,−3〉 light.

  19. E. A. Cornell, J. R. Ensher, and C. E. Wieman, Bose-Einstein Condensation in Atomic Gases, Proceedings of the International School of Physics “Enrico Fermi,” Course CXL (IOS Press, Amsterdam, 1999), pp. 53-55.

    Google Scholar 

  20. Four-wire resistivity measurements were made using similar samples of copper (99.9999% purity), and titanium (99.7% purity) to what were used for the lifetime measurements; the purity of the silicon sample was 99.999%.

  21. At distances within 10 μm of titanium, microwave transitions to the |F=2〉 levels may begin to contribute significantly to the loss as well; this is not accounted for in the plotted theory curves.

  22. C. I. Sukenik, M. G. Boshier, D. Cho, V. Sandoghdar, and E. A. Hinds, Phys. Rev. Lett. 70, 560(1993); A. Landragin, et al., Phys. Rev. Lett. 77, 1464(1996); F. Shimizu, Phys. Rev. Lett. 86, 987(2001).

    Google Scholar 

  23. In the May 2003 DAMOP meeting V. Vuletic as well reported seeing loss on an atom chip, he attributed it to Casimir-Polder forces.

  24. J. Reichel, W. Hänsel, and T. W. Hänsch, Phys. Rev. Lett. 83, 3398(1999).

    Google Scholar 

  25. W. Hänsel, J. Reichel, P. Hommelhoff, and T. W. Hänsch, Phys. Rev. A 64, 063607(2001).

    Google Scholar 

  26. The use of surface-induced evaporation to create BEC was also demonstrated by T. Kishimoto, P. Schwindt, Y. J. Wang, and D. Anderson, private communication.

  27. C. F. Roos, P. Cren, T. Lahaye, J. Dalibard, and D. Guéry-Odelin, Laser Phys. 13, 605(2003).

    Google Scholar 

  28. C. Henkel, P. Krüger, R. Folman, and J. Schmiedmayer, Appl. Phys. B 76, 173(2003).

    Google Scholar 

  29. P. Krüger, et al., quant-ph/0306111 (2003).

  30. R. Dumke, T. Müther, M. Volk, W. Ertmer, and G. Birkl, Phys. Rev. Lett. 89, 220402(2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harber, D.M., McGuirk, J.M., Obrecht, J.M. et al. Thermally Induced Losses in Ultra-Cold Atoms Magnetically Trapped Near Room-Temperature Surfaces. Journal of Low Temperature Physics 133, 229–238 (2003). https://doi.org/10.1023/A:1026084606385

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026084606385

Navigation